Class 11 JEE Chemistry

VOLUME STRENGTH OF H2O2

The volume strength of an H_2O_2 solution is defined as the volume of oxygen (O_2) evolved at standard temperature and pressure (STP) in milliliters obtained per milliliter of the H_2O_2 solution. In simpler terms, if 1 liter of the H_2O_2 solution generates 10 liters of oxygen at STP, the volume strength of the H_2O_2 is considered to be 10 volumes.

Consider a sample of H₂O₂ labeled 'V' volume.

The decomposition reaction of H_2O_2 is represented as $2H_2O_2 \rightarrow 2H_2O + O_2$

When 68 grams of H₂O₂ produces 22400 mL of oxygen

Then V mL of oxygen is obtained by $\frac{68}{22400} \times \text{V}$ grams of H_2O_2 .

Expressing this relationship further, if 1 mL of H_2O_2 corresponds to $\frac{68}{22400} \times V$ grams of H_2O_2 , then for

1000 mL (1 liter) of H_2O_2 , the amount becomes $\frac{68}{22.4}\times V$ grams per liter.

Therefore, the strength of H_2O_2 is given by $\frac{68}{22.4} \times V$.

This relates to the molarity, which is $\frac{V}{11.2}$

and the normality, which is $\frac{V}{5.6}$.