Class 11 JEE Chemistry

SOLUBILITY AND SOLUBILITY PRODUCT

Solubility Equilibria of Sparingly Soluble Salts

"The amount of a substance that has been dissolved in a solution, expressed in terms of moles per unit volume."

Classification of Salts:

$$\begin{array}{lll} \text{If} & & S > 0.1 \text{ M} \\ \Rightarrow & & \text{Soluble Salts} \\ \text{If} & & 0.01 \text{ M} < S < 0.1 \text{ M} \\ \Rightarrow & & \text{Partial Soluble salts} \\ \text{If} & & S < 0.01 \text{ M} \\ \Rightarrow & & \text{Sparingly soluble salts} \end{array}$$

Note: All salts of alkali metals and NH₄⁺ ion is generally water soluble.

Examples of sparingly soluble salts are AgCl, PbCl₂, Hg₂Cl₂, PbSO₄, Ag₂CO₃, CaSO₄, AgCN, etc.

Process of Dissolution of Sparingly Soluble Salts

Let $AB \rightarrow Sparingly Soluble Salt$

$$AB(s) \begin{tabular}{lll} $dissolution \\ $H_2(\ell)$ & \oplus & Θ \\ \hline & A(aq) & + & B(aq) \\ \hline & Precipitation \\ \end{tabular}$$

Initially, rate of dissociation > rate of ppt.

: more salt can be dissolved and solution is unsaturated.

But, when Saturated solution

rate of dissolution = rate of ppt ion

In a saturated solution, all the dissolved salt exists in the form of its ions. Consequently, the concentration of ions in a saturated solution serves as an indicator of the salt's solubility.

This principle is typically applied to salts with limited solubility, and we will be focusing on solubility in such solutions

Simple Solubility

Let the salt is $A_X B_{y'}$ in solution in water, let the solubility in $H_20 =$'s' M, then

$$A_x B_y \longrightarrow x A^{y+} + y B^{-x}$$

$$-xs \qquad ys$$

$$\vdots \qquad k_{sp} = (xs)^x (ys)^y = x^x, y^y.(s)^{x+y}$$

Class 11 JEE Chemistry

Different Cases of Calculating Solubilities Solubility Product (K_{SD})

For a saturated solution,

$$AB \longrightarrow A^{\oplus} + B^{\ominus}$$

$$K_{eq.} = \frac{[A^{+}][B^{-}]}{[AB]} \quad [concentration of solid is constant]$$

$$\vdots \qquad \qquad \underbrace{Keq. \; [AB]}_{=} = [A] \; ^{+}[B] \; ^{-}$$

$$K_{sp} = [A^{+}] \; [B^{-}]$$

Solubility product (K_{sp}) is a type of equilibrium constant, so will be dependent only on temperature for a particular salt.

Here different methods for writing \mathbf{K}_{sp} for different types of salts are following:

(a) AB Type Salt

$$AB(s) \rightarrow A^{+}(aq) + B^{-}(ag)$$

$$s \qquad s$$

$$K_{sp} = [A^{+}][B^{-}] = s^{2}$$

$$s = \sqrt{K_{sp}}$$

(b) A₂B Type Salt

$$A_2 B(s) \rightarrow 2 A^+(aq) + B^-(aq)$$
 $2s$
 s
 $K_{sp} = [A^+]^2[B^-] = [2s]^2[s] = 4s^3$
 $K_{sp} = 4s^3$

(c) AB₃ Type Salt

$$AB_3(s) \rightarrow A^{3+}(aq) + 3 B^{-}(aq)$$

 s 3s
 $K_{SD} = [s][3s]^3 = 27s^4$

(d) A₂B₃ Type Salt

$$A_2 \ B_3(\ s) \rightarrow 2 \ A^{3+}(aq) + 3 \ B^{2-}(aq)$$

$$2s \qquad \qquad 3s$$

$$K_{sp} = [2s]^2 [3s]^3$$

$$K_{sp} = 108 \ s^5$$

(e) AxBy Type Salt

$$\begin{array}{l} AxBy \longrightarrow xA^{y+} + yB^{x-} \\ AxBy \longrightarrow xA^{y+} + yB^{x-} \end{array}$$

Class 11 JEE Chemistry

$$xs$$
 ys
 $K_{sp} = (xs)^{x} (ys)^{y}$
 $K_{sp} = x^{x}.y^{y}.s^{x+y}$

The forthcoming examples will demonstrate various types of solubility and the influence of diverse factors or conditions on a salt's solubility.