PREPARATION AND THE PROPERTIES OF THE COMPOUNDS OF d-BLOCK ELEMENTS Potassium Permanganate (KMnO₄)

Preparation

The production of potassium permanganate involves the utilization of mineral pyrolusite (MnO_2) and includes the following steps.

(a) Conversion of pyrolusite ore to potassium manganate

The Pyrolusite (MnO_2) is melted with either caustic potash (KOH) or potassium carbonate in the presence of air or oxidizing agents like KNO_3 or $KClO_3$. This process results in the formation of a green mass, attributed to the creation of potassium manganate (K_2MnO_4) .

$$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$$

 $2MnO_2 + 2K_2CO_3 + O_2 \rightarrow 2K_2MnO_4 + 2CO_2$

(b) Oxidation of potassium manganate to potassium permanganate

The green mass is dissolved in water, yielding a green solution of potassium manganate. This solution is subsequently subjected to a current of Cl_2 , ozone, or CO_2 to oxidize K_2MnO_4 to $KMnO_4$. Following concentration, dark purple crystals of $KMnO_4$ precipitate from the solution.

$$2K_{2}MnO_{4} + Cl_{2} \rightarrow 2KCl + 2KMnO_{4}$$

 $2K_{2}MnO_{4} + O_{3} + H_{2}O \rightarrow 2KMnO_{4} + 2KOH + O_{2}$
 $3K_{2}MnO_{4} + 2CO_{2} \rightarrow 2K_{2}CO_{3} + MnO_{2} \downarrow + 2KMnO_{4}$

Alternatively, alkaline potassium manganate is electrolytically oxidised.

Electrolytic method

The electrolytic cell, housing an iron cathode and nickel anode, is filled with the potassium manganate solution. Upon passing a current, the manganate ions are oxidized to permanganate ions at the anode, and concurrently, hydrogen is liberated at the cathode.

	K_2MnO_4	\rightarrow	$2K^{+} + MnO_{4}^{2-}$
At anode:	MnO_4^{-2}	\rightarrow	$MnO_4^- + e^-$
	Green		Purple
At cathode:	$2H^{+} + 2e^{-}$	\longrightarrow	2Н
	2H	\longrightarrow	H ₂

Properties

- (a) Colour and M.P.: Dark violet crystalline solid, M.P. 523 K
- (b) Solubility: Moderately soluble is room temperature, but fairly soluble in hot water giving purple solution.
- (c) Heating: When heated strongly it decomposes at 746 K to give K₂MnO₄ and O₂.

$$2\mathsf{KMnO}_4 \qquad \xrightarrow{746\,\mathsf{k}} \qquad \mathsf{K}_2\mathsf{MnO}_4 + \mathsf{MnO}_2 + \mathsf{O}_2$$

Solid KMnO₄ gives KOH, MnO and water vapours, when heated in current of hydrogen.

$$2\text{KmnO}_4 + 5\text{H}_2 \xrightarrow{\Delta} 2\text{KOH} + 2\text{MnO} + 4\text{H}_2\text{O}$$

(d) Action of alkali: On heating with alkali, potassium permanganate changes into potassium manganate and oxygen gas are evolved.

$$4\text{KMnO}_4 + 4\text{KOH} \rightarrow 4\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O} + \text{O}_2$$

(e) Action of con. H₂SO₄: With cold H₂SO₄, it gives Mn₂O₇ which on heating decomposes into MnO₂.

$$2KMnO_4 + 2H_2SO_4 \rightarrow Mn_2O_7 + 2KHSO_4 + H_2O_2Mn_2O_7 \rightarrow 4MnO_2 + 3O_2$$

(f) Oxidising character: - $KMnO_4$ acts as powerful oxidising agent in neutral, alkaline or acidic solution because it liberates nascent oxygen as: -

Acidic solution: - Mn⁺² ions are formed

$$2\mathsf{KMnO}_4 + 3\mathsf{H}_2\mathsf{SO}_4 \quad \longrightarrow \quad \mathsf{K}_2\mathsf{SO}_4 + 2\mathsf{MnSO}_4 + 3\mathsf{H}_2\mathsf{O} + \mathsf{5}[\mathsf{O}]$$

or
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$$
 [equal wt. = $\frac{M}{5}$]

Neutral solution :- MnO_2 is formed

$$2KMnO_4 + H_2O \rightarrow 2KOH + 2MnO_2 + 3[O]$$

or
$$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^- [equal wt. = \frac{M}{3}]$$

In the course of the reaction, the alkali produced induces the formation of an alkaline medium, even when commencing from a neutral medium.

Alkaline medium: - Manganate ions are formed.

$$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + [O]$$

Reactions in Acidic Medium: In acidic medium KMnO_4 oxidizes –

(a) Ferrous salts to ferric salts

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$$

 $Fe^{+2} \rightarrow Fe^{+3} + e^-] \times 5$
 $MnO_4^- + 5Fe^{+2} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{+3} + 4H_2O$

(b) Oxalates to CO_2 :

 $2\text{MHO}_4 + 3\text{C}_2\text{O}_4$ + 10H^{-1} \rightarrow 2MH^{-1}

(c) Iodides to Iodine

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O] \times 2$$

 $2I^- \rightarrow I_2 + 2e^-] \times 5$
 $10I^- + 2MnO_4^- + 16H^+ \rightarrow 2Mn^{+2} + 5I_2 + 8H_2O$

(d) Sulphites to sulphates

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O] \times 2$$

 $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-] \times 5$
 $5SO_3^{2-} + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{+2} + 5SO_4^{2-} + 3H_2O$

(e) It oxidizes H₂S to S

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O] \times 2$$

 $S^2^- \rightarrow S + 2e^-] \times 5$
 $2MnO_4^- + 16H^+ + 5S^{-2} \rightarrow 2Mn^{+2} + 5S + 8H_2O$

(f) It oxidizes SO₂ to sulphuric acid

(g) It oxidizes Nitrites to nitrates

$$2KMnO_4 + 3H_2SO_4 \qquad \longrightarrow \qquad K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O] \\ KNO_2 + O \qquad \longrightarrow \qquad KNO_3] \times 5 \\ 2KMnO_4 + 5KNO_2 + 3H_2SO_4 \qquad \longrightarrow \qquad K_2SO_4 + 2MnSO_4 + 5KNO_3 + 3H_2O$$

Reactions in Neutral Medium

(a) It oxidizes H₂S to sulphur:

$$\begin{array}{lll} 2KMnO_4 + H_2O & \longrightarrow & 2KOH + 2MnO_2 + 3 \ [0] \\ H_2S + O & \longrightarrow & H_2O + S] \times 3 \\ 2KMnO_4 + 3H_2S & \longrightarrow & 2KOH + 2MnO_2 + 2H_2O + 3S \end{array}$$

(b) It oxidizes Manganese sulphate (MnSO₄ to MnO₂) manganese dioxide:

(c) It oxidizes Sodium thiosulphate to sulphate and sulphur:

$$\begin{array}{lll} 2 \text{KMnO}_4 + \text{H}_2\text{O} & \longrightarrow & 2 \text{KOH} + 2 \text{MnO}_2 + 3 \ [\text{O}] \\ \text{Na}_2 \text{S}_2 \text{O}_3 + \text{O} & \longrightarrow & \text{Na}_2 \text{SO}_4 + \text{S}] \times 3 \\ 2 \text{KMnO}_4 + 3 \text{Na}_2 \text{S}_2 \text{O}_3 + \text{H}_2 \text{O} & \longrightarrow & 2 \text{MnO}_2 + 3 \text{Na}_2 \text{SO}_4 + 2 \text{KOH} + 3 \text{S} \end{array}$$

Reactions in Alkaline Medium

(a) It oxidizes Iodides to Iodates in alkaline medium:

$$2KMnO_4 + H_2O \qquad \longrightarrow 2KOH + 2MnO_2 + 3 [O]$$

$$KI + 3O \qquad \longrightarrow KIO_3$$

$$2KMnO_4 + KI + H_2O \qquad \longrightarrow 2MnO_2 + 2KOH + KIO_3$$

(b) Alkaline KMnO₄ (Baeyer's reagent) oxidizes ethylene to ethylene glycol.

$$\begin{array}{c} \operatorname{CH_2} & \operatorname{CH_2} {\longrightarrow} \operatorname$$

Structure

 MnO_4

Uses

(a) Employed in volumetric analysis to estimate ferrous salts, oxalates, and other reducing agents, though it is not utilized as a primary standard due to challenges in obtaining it in a pure state.

- (b) Functions as a potent oxidizing agent in both laboratory and industrial settings.
- (c) Used as a disinfectant and germicide.
- (d) Found in dry cells.
- (e) Utilized for washing wounds in the form of a highly diluted KMnO₄ solution.

Ex. Potassium permanganate acts as an oxidant in neutral, alkaline as well as acidic media. The final products obtained from it in three conditions are respectively:

(A)
$$MnO_4^{2-}$$
, Mn^{3+} and Mn^{2+}

(B)
$$MnO_2$$
, MnO_2 and Mn^{2+}

(C)
$$MnO_2$$
, MnO_2 ⁺ and Mn^3 +

(D) MnO, MnO
$$_2$$
⁺ and Mn 2 +

$$3e^- + 2H_2O + MnO_4^- \rightarrow MnO_2 + 4OH^-$$
 (neutral medium) $e^- + MnO_4^- \rightarrow MnO_4^{-2}$ (dilute alkaline medium)

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
 (acidic medium)

Therefore, (B) option is correct.

Potassium Dichromate (K₂Cr₂O₇)

Preparation

The chromite ore is roasted with sodium carbonate in presence of air in a reverberatory furnace.

4FeO.
$$Cr_2O_3$$
 (chromite ore) + $8Na_2CO_3 + 7O_2 \xrightarrow{\text{Roasting}} 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$ in air

The roasted mass is extracted with water when Na_2CrO_4 goes into the solution leaving behind insoluble Fe_2O_3 . The solution is then treated with calculated amount of H_2SO_4 .

$$2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O_4$$

The solution is concentrated when less soluble Na_2SO_4 crystallizes out. The solution is further concentrated when crystals of $Na_2Cr_2O_7$ are obtained. Hot saturated solution of $Na_2Cr_2O_7$ is then treated with KCl when orange red crystals of $K_2Cr_2O_7$ are obtained on crystallization.

$$Na_2Cr_2O_7 + 2KCI \rightarrow K_2Cr_2O_7 + 2 NaCl$$

Note: $K_2Cr_2O_7$ is preferred over $Na_2Cr_2O_7$ as a primary standard in volumetric estimation because $Na_2Cr_2O_7$ is hygroscopic in nature but $K_2Cr_2O_7$ is not.

Properties

(a) Physical

This crystalline compound exhibits an orange-red color and displays moderate solubility in cold water, becoming freely soluble in hot water. Its melting point is 398°C.

(b) Chemical

(i) Effect of heating:

On heating strongly, it decomposes liberating oxygen.

$$2K_2Cr_2O_7 \rightarrow 2K_2CrO_4 + Cr_2O_3 + O_2$$

Upon exposure to alkalies, it undergoes conversion to chromate, resulting in a color change from orange to yellow. Upon acidification, the yellow color reverts to orange.

$$\begin{array}{cccc} \text{K}_2\text{Cr}_2\text{O}_7 + 2\text{KOH} & \rightarrow & 2\text{K}_2\text{CrO}_4 + \text{H}_2\text{O} \\ & \text{Cr}_2\text{O} + 2\text{OH}^- & \rightarrow & 2\text{CrO} + \text{H}_2\text{O} \\ & \text{Orange} & \text{Yellow} \\ & 2\text{CrO} + 2\text{H}^+ & \rightarrow & \text{Cr}_2\text{O} + \text{H}_2\text{O} \\ & \text{Yellow} & \text{Orange} \end{array}$$

Thus $\text{CrO}_4{}^{2-}$ and $\text{Cr}_2\text{O}_7{}^{2-}$ exist in equilibrium and are interconvertible by altering the pH of solution.

$$2CrO + 2H^+ \rightleftharpoons 2HCrO_4^- \rightleftharpoons Cr_2O + H_2O$$

Chromate ions are present in alkaline solutions, whereas dichromate ions are present in acidic solutions.

- (ii) $K_2Cr_2O_7 + 2H_2SO_4$ (conc. & cold) $\rightarrow 2CrO_3\downarrow$ (bright orange/red) $+ 2KHSO_4 + H_2O_3\downarrow$ (conc. & Hot) $\rightarrow 2K_2SO_4 + 8H_2O + 2Cr_2(SO_4)_3 + 3O_2$
- (iii) Acidified K₂Cr₂O₇ solution reacts with H₂O₂ to give a deep blue solution due to the formation of CrO₅.

$$Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \rightarrow 2CrO_5 + 5H_2O$$

The gradual fading of the blue color in an aqueous solution is attributed to the decomposition of CrO_5 into Cr^{3+} ions and oxygen. In a less acidic solution, the combination of $K_2Cr_2O_7$ and H_2O_2 produces a violet-colored and diamagnetic salt due to the formation of $[CrO(O_2)(OH)]$ –. In an alkaline medium with 30% H_2O_2 , a red-brown K_3CrO_8 (diperoxo) is formed, representing a tetra-peroxy species $[Cr(O_2)_4]^{3-}$, and thus, chromium is in the +V oxidation state. In an ammoniacal solution, a dark red-brown compound, $(NH_3)_3CrO_4$, which is a diperoxo compound with Cr(IV), is generated.

(iv) Potassium dichromate reacts with hydrochloric acid and evolves chlorine gas.

$$K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2$$

(v) It acts as a powerful oxidising agent in acidic medium (dilute H₂SO₄)

$$Cr_2O + 14H^+ + 6e^- \rightarrow 2Cr^{+3} + 7H_2O. (E^0 = 1.33 \text{ V})$$

The oxidation state of Cr changes from + 6 to +3.

(a) Iodine is liberated from potassium iodide:

$$Cr_2O + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$2I- \rightarrow I_2 + 2e- \times [3]$$

$$Cr_2O + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 3I_2 + 7H_2O$$

(b) Ferrous salts are oxidised to ferric salts:

$$6\text{Fe}^{2+} + \text{Cr}_2\text{O} + 14\text{H}^+ \rightarrow 6\text{Fe}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

(c) Sulphites are oxidised to sulphates:

$$Cr_2O + 3SO + 8H^+ \rightarrow 3SO + 2Cr^{3+} + 4H_2O$$

(d) H₂S is oxidised to sulphur:

$$Cr_2O + 3H_2S + 8H^+ \rightarrow 2Cr^{3+} + 7H_2O + 3S$$

(e) SO_2 is oxidised to H_2SO_4 :

$$\text{Cr}_2\text{O}_7^{2-} + 3\text{SO}_2 + 2\text{H}^+ \rightarrow 2\text{Cr}^{3+} + 3\text{SO}_4^{2-} + \text{H}_2\text{O};$$

Chrome alum is obtained when acidified K₂Cr₂O₇ solution is saturated with SO₂.

(f) It oxidises ethyl alcohol to acetaldehyde and acetaldehyde to acetic acid

$$\mathrm{C_2H_5OH} \xrightarrow{[\mathrm{O}]} \mathrm{CH_3CHO} \xrightarrow{[\mathrm{O}]} \mathrm{CH_3COOH}$$

ethyl alcohol acetaldehyde acetic acid

It also oxidises nitrites to nitrates, arsenates to arsenates, HBr to Br₂. HI to I₂, etc. (g)

(h)
$$K_2Cr_2O_7 + 2C \text{ (charcoal)} \xrightarrow{\Delta} Cr_2O_3 + K_2CO_3 + CO \uparrow$$

(vi) Chromyl chloride test:
$$4\text{Cl}^- + \text{Cr}_2\text{O}_7^{2-} + 6\text{H}^+ \rightarrow 2\text{Cr}_2\text{Cl}_2 \uparrow \text{ (deep red)} + 3\text{H}_2\text{O}$$

$$CrO_2Cl_2 + 4OH^- \rightarrow CrO_4^{2-} (yellow) + 2Cl^- + 2H_2O$$

$$CrO_4^{2-}$$
 (yellow) + Pb²⁺ \rightarrow PbCrO₄ \downarrow (yellow)

(vii)
$$\text{Cr}_2\text{O}_7^{2-}$$
 (concentrated solution) + $2\text{Ag}^+ \rightarrow \text{Ag}_2\text{Cr}_2\text{O}_7 \downarrow$ (reddish brown)

$$Ag_2Cr_2O_7 + H_2O$$
 $\rightarrow Ag_2CrO_4 + CrO_4^{2-} + 2H^+$.

(viii)
$$Cr_2O_7^{2-} + Ba^{2+} + H_2O \Rightarrow 2BaCrO_4 \downarrow + 2H^+$$

As strong acid is produced, the precipitation is only partial. But if NaOH or CH3COONa is added, precipitate becomes quantitative.

Uses

It is used:

- (i) Employed as a volumetric reagent for estimating reducing agents like oxalic acid, ferrous ions, iodide ions, etc., and serves as a primary standard.
- (ii) Utilized in the synthesis of various chromium compounds such as chrome alum, chrome yellow, chrome red, zinc yellow, etc.
- (iii) Applied in various industries including dyeing, chrome tanning, calico printing, photography, etc.
- Functions as a cleansing agent for glassware in the form of chromic acid. (iv)
- Ex. An inorganic compound (A) has garnet red prismatic crystals. (A) is moderately soluble in water and dissolves in cold concentrated H₂SO₄ to yield red crystals (B). In presence of dilute H₂SO₄ it converts a pungent gas(C) into a yellow turbidity (D) and converts a suffocating gas (E) into a green solution (F). The gas (C)and (E) also combine to produce the yellow turbidity (D). With KI and starch in presence of dilute. H₂SO₄ (A) yields blue colour. (A) and concentrated H₂SO₄ mixture is used as a cleansing agent for glassware in the laboratory. Identify (A) and explain the reactions.
- Sol. As compound (A) has garnet red prismatic crystals which with cold conc. H₂SO₄ gives red crystals and a suffocating gas (SO₂) turns its solution in water in to green coloured solution, therefore compound (A) may be K₂Cr₂O₇.

colour

Silver Nitrate (Lunar Caustic), AgNO₃

Silver nitrate stands out as the prevalent and pivotal salt within the realm of silver compounds.

Preparation

It is derived through the process of heating diluted nitric acid with silver. Upon concentration and subsequent cooling of the solution, silver nitrate crystals precipitate out.

$$3Ag + 4HNO_3 \xrightarrow{Heat} 3AgNO_3 + NO + 2H_2O$$

Properties

- 1. This compound manifests as colorless crystalline structures, possessing solubility in both water and alcohol mediums. Its melting point registers at 212°C.
- 2. When encountering organic materials, it undergoes decomposition, resulting in the formation of metallic silver, thus imparting a blackened appearance.
- 3. Subjected to temperatures surpassing its melting point, it initiates decomposition, yielding silver nitrite and oxygen as the resultant products.

Precipitation reaction

(a) Chlorides, bromides, and iodides produce a precipitate that exhibits insolubility when exposed to dilute nitric acid (HNO₃).

$$NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$$
 $KBr + AgNO_3 \rightarrow AgBr + KNO$
 $Pale \ yellow \ ppt$
 $Nal + AgNO_3 \rightarrow Agl + NaNO_3$
 $Pale \ yellow \ ppt$

(b) Phosphates and arsenites produce a yellow precipitate that dissolves in both dilute nitric acid and ammonia.

$$3AgNO_3 + Na_3PO_4 \rightarrow Ag_3PO_4 + 3NaNO_3$$

 $Na_3AsO_3 + 3AgNO_3 \rightarrow Ag_3AsO_3 + 3NaNO_3$

(c) Chromates and arsinates yield a precipitate that is red in color.

$$K_2CrO_4 + 2AgNO_3 \rightarrow Ag_2CrO_4 + 2KNO_3$$

(d) Sulphides produce a precipitate that is black in color.

$$Na_2S + 2AgNO_3 \rightarrow Ag_2S + 2NaNO_3$$

(e) Oxalates and borates yield a precipitate that is white in color.

$$\begin{array}{lll} Na_2C_2O_4 + 2AgNO_3 & \rightarrow & Ag_2C_2O_4 + 2NaNO_3 \\ Na_3BO_3 + 3AgNO_3 & \rightarrow & Ag_3BO_3 \\ & & \text{silver borate} \end{array}$$

(f) Thiosulfates produce a white precipitate composed of Ag₂S₂O₃, which progressively darkens to black as a result of hydrolysis over time.

$$Na_2S_2O_3 + 2AgNO_3 \rightarrow Ag_2S_2O_3 + 2NaNO_3$$

 $Ag_2S_2O_3 + H_2O \rightarrow Ag_2S + H_2SO_4$

(g) Upon treatment with a sodium hydroxide (NaOH) solution, it results in the formation of a precipitate consisting of silver oxide.

$$2AgNO_3 + 2NaOH \rightarrow Ag_2O + 2NaNO_3 + H_2O$$

(h) Upon the addition of potassium cyanide (KCN) to silver nitrate, a white precipitate of silver cyanide emerges, which dissolves in an excess of KCN, giving rise to a complex salt known as potassium argent cyanide.

$$AgNO_3 + KCN \rightarrow AgCN + KNO_3$$

 $AgCN + KCN \rightarrow K[Ag(CN)_2]$

(i) Upon the introduction of sodium thiosulfate to silver nitrate, a white precipitate of silver thiosulfate becomes evident. Nonetheless, this precipitate dissolves in an excess of sodium thiosulfate, resulting in the formation of a complex salt.

$$\begin{split} 2AgNO_3 + Na_2S_2O_3 &\to Ag_2S_2O_3 + 2NaNO_3 \\ Ag_2S_2O_3 + 3Na_2S_2O_3 &\to 2Na_3 \left[Ag(S_2O_3)_2\right] \\ &\quad sodium \ argent \ thiosulphate \end{split}$$