Class 11 JEE Chemistry

USES OF BORON, ALUMINIUM AND THEIR COMPOUNDS

Compounds of Aluminium

Aluminum Oxide (Al₂O₃)

It is also called alumina. It occurs in nature in the form of bauxite and corundum. It is also found in the form of gems. Some important aluminum oxide gems are:

- (A) Oriental Topaz-yellow (Fe³⁺)
- (B) Sapphire-blue (Fe $^{2+/3+}$ / Ti $^{4+}$)
- (C) Ruby-red (Cr³⁺)
- (D) Oriental Emerald-green (Cr³⁺ / V³⁺)

Preparation

Pure Al₂O₃ is obtained by igniting Al₂(SO₄)₃, Al(OH)₃ or ammonium alum.

$$Al_2(SO_4)_3 \xrightarrow{\Delta} Al_2O_3 + 3SO_3$$
; $2Al(OH)_3 \xrightarrow{\Delta} Al_2O_3 + 3H_2O$
 $(NH_4)_2SO_4.Al_2(SO_4)_3.24H_2O \xrightarrow{\Delta} 2NH_3 + Al_2O_3 + 4SO_2 + 25H_2O$

Properties

It is a white amorphous powder insoluble in water but soluble in acids (forming e.g., $AlCl_3$) as well as alkali's (forming e.g., $NaAlO_2$), Thus amphoteric in nature. It is a polar covalent compound. Exists in two forms $a-Al_2O_3$ or corundum and $g-Al_2O_3$.

Addition of Cr₂O₃ or Fe₂O₃ makes alumina coloured.

g-Al₂O₃
$$\xrightarrow{1000^{\circ} \text{C}}$$
 a-Al₂O₃

Uses

- (i) It is used for the extraction of aluminum.
- (ii) It is used for making artificial gems.
- (iii) It is used for the preparation of compounds of aluminum.
- (iv) a-Al₂O₃ is used in making furnace linings. It is a refractory material.
- (v) It is used as a catalyst in organic reactions.
- (vi) Corundum is extremely hard and is used as 'Jewelers rouge' to polish glass.
- (vii) g-Al₂O₃ dissolves in acids absorbs moisture and is used in chromatography.

Aluminum Chloride (AlCl₃.6H₂O)

It is a colourless crystalline solid, soluble in water. It is covalent. Anhydrous AlCl₃ is a deliquescent white solid.

Preparation:

(i) By dissolving aluminum, Al₂O₃, or Al (OH)₃ in dilute HCl:

$$2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2$$
; $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3H_2O$; $Al(OH)_3 + 3HCl \longrightarrow AlCl_3 + 3H_2O$

The solution obtained is filtered and crystallized when the crystals of AlCl₃.6H₂O are obtained.

- (ii) Anhydrous AlCl₃ is obtained by the action of Cl₂ on heated aluminum.
- (iii) By heating a mixture of Al₂O₃ and coke and passing chlorine over it.

$$Al_2O_3 + 3C + 3Cl_2 \longrightarrow 2AlCl_3 \text{ (anhidros)} + 3CO$$

Properties:

(i) Action of heat: Hydrated salt when heated strongly is converted to Al₂O₃.

$$2AlCl_3.6H_2O \xrightarrow{\quad \Delta\quad} Al_2O_3 + 6HCl + 3H_2O$$

(ii) Action of moisture on anhydrous AlCl₃: When exposed to air, anhydrous AlCl₃ produces white fumes of HCl.

$$AlCl_3 + 3H_2O \Rightarrow Al(OH)_3 + 3HCl$$

Class 11 JEE Chemistry

(iii) Action of NH₃: Anhydrous AlCl₃ absorbs NH₃ since the former is a Lewis acid.

$$AlCl_3 + 6NH_3 \longrightarrow AlCl_3.6NH_3$$
 (white solid)

(iv) Action of NaOH solution: When NaOH solution is added dropwise to an aqueous AlCl₃ solution, a gelatinous precipitate of Al (OH)₃ is first formed which dissolves in excess of NaOH solution to give a colourless solution of sodium meta-aluminate.

$$AlCl_3 + 3NaOH \longrightarrow Al(OH)_3^- + 3NaCl; Al(OH)_3 + NaOH \longrightarrow NaAlO_2 + 2H_2O$$

This reaction is important as a test to distinguish between an aluminum salt from salts of Mg, Ca, Sr, and Ba. (When NaOH solution is added to their salt solutions, a white precipitate of hydroxide forms which does not dissolve in excess of NaOH).

(v) Action of NH₄OH solution: When NH₄OH solution is added to a solution of AlCl₃, a white precipitate of Al (OH)₃ is formed which does not dissolve in excess of NH₄OH.

$$AlCl_3 + 3NH_4OH \longrightarrow Al (OH)_3$$
 (white gelatinous) + $3NH_4Cl$

This reaction is important as a test to distinguish an Al salt from a Zn salt. (With a Zn salt a white precipitate of $Zn(OH)_2$ is formed which dissolves in excess of NH_4OH solution).

(vi) Hydrolysis with water: When AlCl₃ is dissolved in water, it undergoes hydrolysis rapidly to produce Al (OH)₃ which is a weak base and HCl which is a strong acid. Hence the solution is acidic to litmus.

$$[Al (H_2O)_6]^{3+} \rightleftharpoons [Al (H_2O)_5OH]^{+2} + H^+$$

The complex cation has a high tendency to get dimerized.

$$2[Al (H2O)5OH]2+ \rightarrow [(H2O)4 Al Al Al (H2O)4]+4 +2H2O OH$$

(vii)
$$4LiH + AlCl_3 \longrightarrow LiAlH_4 + 3LiCl$$

Uses:

- (i) As catalyst for cracking of petroleum.
- (ii) As catalyst in Friedel-Crafts reactions.
- (iii) For preparing aluminum compounds.

Alums; M_2SO_4 . $M'_2(SO_4)_3$. $24H_2O$ or $MM'(SO_4)_2$. $12H_2O$

Alums are transparent crystalline solids having the above general formula where M is almost any univalent positive cation (except Li⁺ because this ion is too small to meet the structural requirements of the crystal) and M' is a trivalent positive cation (Al³⁺, Ti³⁺, V³⁺, Cr³⁺, Fe³⁺, Mn³⁺, Co³⁺, Ga³⁺ etc.). Alums contain the ions [M (H₂O)₆]⁺, [M' (H₂O)₆]³⁺ and SO₄²⁻ in the ratio 1: 1: 2. Some important alums are:

- (i) Potash alum K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$
- (ii) Chrome alum K₂SO₄.Cr₂(SO₄)₃.24H₂O
- (iii) Ferric alum K_2SO_4 . $Fe_2(SO_4)_3$. $24H_2O$
- (iv) Ammonium alum $(NH_4)_2SO_4.Al_2(SO_4)_3.24H_2O$

Alums are double salts which when dissolved in water produce metal ions (or ammonium ions) and the sulphate ions.

Preparation:

A mixture containing solutions of M_2SO_4 and $M_2(SO_4)_3$ in 1:1 molar ratio is fused & then the resulting mass is dissolved into water. From the solution thus obtained, alums are crystallized.

Class 11 JEE Chemistry

Uses:

(i) As a mordant in dye industry. The fabric which is to be dyed is dipped in a solution of the alum and heated with steam. Al $(OH)_3$ obtained as hydrolysis product of $[Al (H_2O)_6]^{3+}$ deposits into the fibres and then the dye is absorbed on Al $(OH)_3$.

- (ii) As a germicide for water purification
- (iii) As a coagulating agent for precipitating colloidal impurities from water.

Uses of Boron Compounds

- (i) Boron finds application in the fabrication of high-strength steel designed to withstand highimpact forces, and its neutron-absorbing properties make it valuable in reactor rods for regulating nuclear reactions.
- (ii) Boron carbide serves as an abrasive material in various applications.

Uses of Aluminium Compounds

It is extensively used

- (i) In the production of cooking and domestic utensils.
- (ii) As a coating of aluminum on tanks, pipes, iron bars, and various steel items to protect against corresion
- (iii) In the fabrication of aluminum cables.
- (iv) For crafting precision instruments, surgical equipment, aircraft structures, railcar bodies, motorboats, and automobiles.
- (v) Aluminates play a vital role as components of Portland cement.