"Obvious" is the most dangerous word in mathematics....... Bell, Eric Temple

Binomial expression :

Any algebraic expression which contains two dissimilar terms is called binomial expression.

For example :
$$x + y$$
, $x^2y + \frac{1}{xy^2}$, $3 - x$, $\sqrt{x^2 + 1} + \frac{1}{(x^3 + 1)^{1/3}}$ etc.

Terminology used in binomial theorem :

Factorial notation : In or n! is pronounced as factorial n and is defined as

 $\begin{cases} n(n-1)(n-2).....3 & . \ 2 & . \ 1 & ; \ if \ n \in N \\ 1 & ; \ if \ n = 0 \end{cases}$ n! = 1 **Note :** $n! = n \cdot (n-1)!$; n ∈ N

> Mathematical meaning of "C, : The term "C, denotes number of combinations of r things choosen from n distinct things mathematically, ${}^{n}C_{r} = \frac{n !}{(n-r)! r!}$, n, $r \in W$, $0 \le r \le n$

Note : Other symbols of of
$${}^{n}C_{r}$$
 are $\binom{n}{r}$ and C(n, r)

Properties related to "C. :

(i) ${}^{n}C_{r} = {}^{n}C_{n-r}$

No

Dete: If
$${}^{n}C_{x} = {}^{n}C_{y} \implies$$
 Either $x = y$ or $x + y = r$

(ii)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r-1}$$

(iii)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(iv)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n(n-1)}{r(r-1)} {}^{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2)\dots(n-(r-1))}{r(r-1)(r-2)\dots(2-1)}$$

If n and r are relatively prime, then "C, is divisible by n. But converse is not necessarily true. (v)

Statement of binomial theorem :

 $(a + b)^{n} = {}^{n}C_{0} a^{n}b^{0} + {}^{n}C_{1} a^{n-1}b^{1} + {}^{n}C_{2} a^{n-2}b^{2} + \dots + {}^{n}C_{r} a^{n-r} b^{r} + \dots + {}^{n}C_{n} a^{0} b^{n}$ where $n \in N$

or
$$(a + b)^n = \sum_{r=0}^n {}^nC_r a^{n-r}b^r$$

Note : If we put a = 1 and b = x in the above binomial expansion, then $(1 + x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + ... + {}^{n}C_{r}x^{r} + ... + {}^{n}C_{n}x^{n}$ or

or
$$(1 + x)^n = \sum_{r=0}^n {}^nC_r x^r$$

Example #1: Expand the following binomials :

(ii) $\left(1-\frac{3x^2}{2}\right)^4$ (i) $(x + \sqrt{2})^5$

Solution :

(i)
$$(x + \sqrt{2})^5 = {}^5C_0x^5 + {}^5C_1x^4 (\sqrt{2}) + {}^5C_2x^3 (\sqrt{2})^2 + {}^5C_3x^2 (\sqrt{2})^3 + {}^5C_4x (\sqrt{2})^4 + {}^5C_5 (\sqrt{2})^5$$

= $x^5 + 5\sqrt{2}x^4 + 20x^3 + 20\sqrt{2}x^2 + 20x + 4\sqrt{2}$

(ii)
$$\left(1-\frac{3x^2}{2}\right)^4 = {}^4C_0 + {}^4C_1 \left(-\frac{3x^2}{2}\right) + {}^4C_2 \left(-\frac{3x^2}{2}\right)^2 + {}^4C_3 \left(-\frac{3x^2}{2}\right)^3 + {}^4C_4 \left(-\frac{3x^2}{2}\right)^4 = 1 - 6x^2 \frac{27}{2} + x^4 - \frac{27}{2} x^6 + \frac{81}{16} x^8$$

Example # 2 : Expand the binomial $\left(\frac{2}{x} + x\right)^{10}$ up to four terms

Solution: $\left(\frac{2}{x}+x\right)^{10} = {}^{10}C_0\left(\frac{2}{x}\right)^{10} + {}^{10}C_1\left(\frac{2}{x}\right)^9 x + {}^{10}C_2\left(\frac{2}{x}\right)^8 x^2 + {}^{10}C_3\left(\frac{2}{x}\right)^7 x^3 + \dots$

Self practice problems :

(1) Write the first three terms in the expansion of $\left(2-\frac{y}{3}\right)^{\circ}$.

(2) Expand the binomial
$$\left(\frac{x^2}{3} + \frac{3}{x}\right)^3$$

Ans. (1)
$$64 - 64y + \frac{80}{3}y^2$$
 (2) $\frac{x^{10}}{243} + \frac{5}{27}x^7 + \frac{10}{3}x^4 + 30x + \frac{135}{x^2} + \frac{243}{x^5}$

Observations :

- (i) The number of terms in the binomial expansion $(a + b)^n$ is n + 1.
- (ii) The sum of the indices of a and b in each term is n.
- (iii) The binomial coefficients $({}^{n}C_{0}, {}^{n}C_{1}, \dots, {}^{n}C_{n})$ of the terms equidistant from the beginning and the end are equal, i.e. ${}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1}$ etc. {:: ${}^{n}C_{r} = {}^{n}C_{n-r}$ }
- (iv) The binomial coefficient can be remembered with the help of the following pascal's Triangle (also known as Meru Prastra provided by Pingla)

Regarding Pascal's Triangle, we note the following :

- (a) Each row of the triangle begins with 1 and ends with 1.
- (b) Any entry in a row is the sum of two entries in the preceding row, one on the immediate left and the other on the immediate right.

Example # 3 :	The number of dissimilar terms in the expansion of $(1 + x^4 - 2x^2)^{15}$ is				
-	(A) 21	(B) 31	(C) 41	(D) 61	
Solution :	$(1 - x^2)^{30}$				
	Therefore number of dissimilar terms = 31.				

General term :

 $\begin{aligned} (x + y)^n &= {}^nC_0 x^n y^0 + {}^nC_1 x^{n-1} y^1 + \dots + {}^nC_r x^{n-r} y^r + \dots + {}^nC_n x^0 y^n \\ (r + 1)^{th} term is called general term and denoted by T_{r+1}. \\ T_{r+1} &= {}^nC_r x^{n-r} y^r \end{aligned}$

Note : The rth term from the end is equal to the (n - r + 2)th term from the begining, i.e. ${}^{n}C_{n-r+1} x^{r-1} y^{n-r+1}$

Example # 4: Find (i) 15th term of
$$(2x - 3y)^{20}$$
 (ii) 4th term of $\left(\frac{3x}{5} - y\right)^{2}$
Solution : (i) $T_{14+1} = {}^{23}C_{14} (2x)^{5} (-3y)^{14} = {}^{23}C_{14} (2^{5} 3^{14} x^{6} y^{14})$
(ii) $T_{3+1} = {}^{7}C_{3} \left(\frac{3x}{5}\right)^{4} (-y)^{5} = {}^{7}C_{3} \left(\frac{3}{5}\right)^{5} x^{4}y^{5}$
Example # 5: Find the number of rational terms in the expansion of $\left(2^{\frac{1}{2}} + 3^{\frac{1}{2}}\right)^{600}$ is
 $T_{r,1} = e^{ex}C_{r} \left(2^{\frac{1}{2}}\right)^{600+r} \left(3^{\frac{1}{5}}\right)^{1} = e^{ex}C_{r} \left(2^{\frac{2}{3}} + 3^{\frac{1}{5}}\right)^{600}$ is
 $T_{r,1} = e^{ex}C_{r} \left(2^{\frac{1}{2}}\right)^{600+r} \left(3^{\frac{1}{5}}\right)^{1} = e^{ex}C_{r} \left(2^{\frac{2}{3}} + 3^{\frac{1}{5}}\right)^{600}$ is
 $T_{r,1} = e^{ex}C_{r} \left(2^{\frac{1}{2}}\right)^{600+r} \left(3^{\frac{1}{5}}\right)^{1} = e^{ex}C_{r} \left(2^{\frac{2}{3}} + 3^{\frac{1}{5}}\right)^{600}$ is
 $T_{r,1} = e^{ex}C_{r} \left(2^{\frac{1}{2}}\right)^{600+r} \left(3^{\frac{1}{5}}\right)^{1} = e^{ex}C_{r} \left(2^{\frac{2}{3}} + 3^{\frac{1}{5}}\right)^{1}$
The above term will be rational if exponent of 3 and 2 are integers
It means $\frac{600-r}{2}$ and $\frac{r}{5}$ must be integers.
The possible set of values of r is (0, 15, 30, 45....,600)
Hence, number of rational terms is 41
Middle term(s):
(a) If n is even, there is only one middle term, which is $\left(\frac{n+2}{2}\right)^{th}$ term.
(b) If n is odd, there are two middle terms, which are $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+1}{2}+1\right)^{th}$ terms.
Example # 6: Find the middle term(s) in the expansion of
(i) $(1+2x)^{12}$
Here, n is even, therefore middle term is $\left(\frac{12+2}{2}\right)^{n}$ term.
It means T_i is middle term $T_{r} = {}^{12}C_{e}(2x)^{e}$
(ii) $\left(2y - \frac{y^{2}}{2}\right)^{1}$
Here, n is odd therefore, middle terms are $\left(\frac{11+1}{2}\right)^{n} & & & & & & \\ (10) \left(2y - \frac{y^{2}}{2}\right)^{2} = -2 {}^{11}C_{e}y^{n} \Rightarrow T_{r} = {}^{11}C_{e}(2y)^{5} \left(-\frac{y^{2}}{2}\right)^{6} = \frac{{}^{11}C_{e}}{2}y^{1}$
Example # 7: Find term which is independent of x in $\left(x^{2} - \frac{1}{x^{6}}\right)^{16}$
Solution : $T_{r+1} = {}^{12}C_{r}(x)^{rer} \left(-\frac{1}{x^{5}}\right)^{1}$
For term to be independent of x, exponent of x should be 0
 $3^{2} - 2r = 6r$ \Rightarrow $r = 4$ \therefore T_{5} is indep

Numerically greatest term in the expansion of $(a + b)^n$, $n \in N$

Binomial expansion of $(a + b)^n$ is as follows : – $(a + b)^n = {}^nC_0 a^nb^0 + {}^nC_1 a^{n-1}b^1 + {}^nC_2 a^{n-2}b^2 + ... + {}^nC_r a^{n-r} b^r + + {}^nC_n a^0 b^n$ If we put certain values of a and b in RHS, then each term of binomial expansion will have certain value. The term having numerically greatest value is said to be numerically greatest term. Let T_r and T_{r+1} be the rth and (r + 1)th terms respectively

$$\begin{aligned} I_r &= {}^{n}C_{r-1} \ a^{n-(r-1)} \ b^{r-1} \\ T_{r+1} &= {}^{n}C_r \ a^{n-r} \ b^r \\ Now, & \left| \frac{T_{r+1}}{T_r} \right| = \left| \frac{{}^{n}C_r}{{}^{n}C_{r-1}} \frac{a^{n-r} \ b^r}{a^{n-r+1}b^{r-1}} \right| = \frac{n-r+1}{r} \ \cdot \left| \frac{b}{a} \right| \\ Consider & \left| \frac{T_{r+1}}{T_r} \right| \ge 1 \\ & \left(\frac{n-r+1}{r} \right) \left| \frac{b}{a} \right| \ge 1 \qquad \Rightarrow \frac{n+1}{r} - 1 \ge \left| \frac{a}{b} \right| \qquad \Rightarrow r \le \frac{n+1}{1+\left| \frac{a}{b} \right|} \end{aligned}$$

Case - I

$$\begin{array}{l} \text{When} \frac{n+1}{1+\left|\frac{a}{b}\right|} \text{ is an integer (say m), then} \\ (i) & T_{r+1} > T_r & \text{when } r < m \quad (r = 1, 2, 3 ..., m-1) \\ & \text{ i.e. } & T_2 > T_1, T_3 > T_2, ..., T_m > T_{m-1} \\ (ii) & T_{r+1} = T_r & \text{when } r = m \\ & \text{ i.e. } & T_{m+1} = T_m \\ (iii) & T_{r+1} < T_r & \text{when } r > m \quad (r = m+1, m+2, ..., n) \\ & \text{ i.e. } & T_{m+2} < T_{m+1}, T_{m+3} < T_{m+2}, ..., T_{n+1} < T_n \end{array}$$

Conclusion :

When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is an integer, say m, then T_m and T_{m+1} will be numerically greatest terms (both terms are

equal in magnitude)

Case - II

Conclusion :

When is not an integer and its integral part is m, then T_{m+1} will be the numerically greatest term.

Note :	(i)	i) In any binomial expansion, the middle term(s) has greatest binomial coefficient. In the expansion of $(a + b)^n$					
	lf	n No. of greatest binomial coefficien		Greatest binomial coefficient			
		Even	1	ⁿ C _{n/2}			
		Odd	2	${}^{n}C_{(n-1)/2}$ and ${}^{n}C_{(n+1)/2}$			
		(Values of both these coefficients are e					
	(ii)	In order to obtain the term having numerically greatest coefficient, put $a = b = 1$, and proceed as discussed above.					

Example # 8 : Find the numerically greatest term in the expansion of $(7 - 3x)^{25}$ when $x = \frac{1}{3}$. $m = \frac{n+1}{1+\left|\frac{a}{b}\right|} = \frac{25+1}{1+\left|\frac{7}{-1}\right|} = \frac{26}{8}$ Solution : ([m] denotes GIF) [m] = 3∴ T, is numerically greatest term Self practice problems : Find the term independent of x in $\left(x^2 - \frac{3}{x}\right)^9$ (3)The sum of all rational terms in the expansion of $(3^{1/7} + 5^{1/2})^{14}$ is (4)(A) 3² (B) 3² + 5⁷ (C) $3^7 + 5^2$ (D) 5⁷ Find the coefficient of x^{-2} in $(1 + x^2 + x^4) \left(1 - \frac{1}{x^2}\right)^{18}$ (5) (6) Find the middle term(s) in the expansion of $(1 + 3x + 3x^2 + x^3)^{2n}$ Find the numerically greatest term in the expansion of $(2 + 5x)^{21}$ when $x = \frac{2}{r}$. (7) (4) B (5) -681 (7) $T_{11} = T_{12} = {}^{21}C_{10} 2^{21}$ Ans. (3)28.37 ⁶ⁿC_{3n} . X³ⁿ (6) **Example #9**: Show that 7^{n} + 5 is divisible by 6, where n is a positive integer. $7^{n} + 5 = (1 + 6)^{n} + 5 = {}^{n}C_{0} + {}^{n}C_{1} \cdot 6 + {}^{n}C_{2} \cdot 6^{2} + \dots + {}^{n}C_{n} \cdot 6^{n} + 5.$ Solution : $= 6. C_1 + 6^2. C_2 + \dots + C_n \cdot 6^n + 6.$ = 6λ , where λ is a positive integer Hence, $7^{n} + 5$ is divisible by 6. Example # 10 : What is the remainder when 7⁸¹ is divided by 5. Solution : $7^{81} = 7.7^{80} = 7.(49)^{40} = 7(50 - 1)^{40}$ $= 7 \left[{}^{40}C_{0} (50)^{40} - {}^{40}C_{1} (50)^{39} + \dots - {}^{40}C_{39} (50)^{1} + {}^{40}C_{40} (50)^{0} \right]$ = 5(k) + 7(where k is a positive integer) = 5(k + 1) + 2Hence, remainder is 2. Example # 11 : Find the last digit of the number (13)12. Solution : $(13)^{12} = (169)^6 = (170 - 1)^6$ $= {}^{6}C_{0} (170)^{6} - {}^{6}C_{1} (170)^{5} + \dots - {}^{6}C_{5} (170)^{1} + {}^{6}C_{6} (170)^{0}$ Hence, last digit is 1 Note : We can also conclude that last three digits are 481. Which number is larger (1.1)¹⁰⁰⁰⁰⁰ or 10,000 ? Example-12 : Solution : By Binomial Theorem $= (1 + 0.1)^{100000} = 1 + {}^{100000}C_{1}(0.1) + other positive terms$ $(1.1)^{100000}$ $= 1 + 100000 \times 0.1 +$ other positive terms = 1 + 10000 + other positive terms Hence (1.1)¹⁰⁰⁰⁰⁰ > 10,000 Self practice problems : (8)If n is a positive integer, then show that $6^{n} - 5n - 1$ is divisible by 25. (9) What is the remainder when 3257 is divided by 80. (10) Find the last digit, last two digits and last three digits of the number (81)^{25.} Which number is larger (1.3)²⁰⁰⁰ or 600 (11)(9) 3 (10)1,01,001 (11) $(1.3)^{2000}$ Ans.

Some standard expansions :

(i) Consider the expansion

$$(x + y)^{n} = \sum_{r=0}^{n} {}^{n}C_{r} \quad x^{n-r} y^{r} = {}^{n}C_{0} x^{n} y^{0} + {}^{n}C_{1} x^{n-1} y^{1} + \dots + {}^{n}C_{r} x^{n-r} y^{r} + \dots + {}^{n}C_{n} x^{0} y^{n} \dots (i)$$

(ii) Now replace $y \rightarrow -y$ we get

$$(x - y)^{n} = \sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{n-r} y^{r} = {}^{n}C_{0} x^{n} y^{0} - {}^{n}C_{1} x^{n-1} y^{1} + \dots + {}^{n}C_{r} (-1)^{r} x^{n-r} y^{r} + \dots + {}^{n}C_{n} (-1)^{n} x^{0} y^{n} \dots (ii)$$

- (iii) Adding (i) & (ii), we get $(x + y)^n + (x - y)^n = 2[{}^nC_0 x^n y^0 + {}^nC_2 x^{n-2} y^2 + \dots]$
- (iv) Subtracting (ii) from (i), we get $(x + y)^n - (x - y)^n = 2[{}^nC_1 x^{n-1} y^1 + {}^nC_3 x^{n-3} y^3 + \dots]$

Properties of binomial coefficients :

 $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_r x^r + \dots + C_n x^n$ (1) where C_r denotes nC_r

- (1) The sum of the binomial coefficients in the expansion of $(1 + x)^n$ is 2^n Putting x = 1 in (1) ${}^nC_0 + {}^nC_1 + {}^nC_2 + \dots + {}^nC_n = 2^n$ (2) or $\sum_{r=0}^n {}^nC_r = 2^n$
- (2) Again putting x = -1 in (1), we get

or
$$\sum_{r=0}^{n} (-1)^{r-n} C_{r} = 0$$
(3)

(3) The sum of the binomial coefficients at odd position is equal to the sum of the binomial coefficients at even position and each is equal to 2ⁿ⁻¹. from (2) and (3)

$${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$$

(4) Sum of two consecutive binomial coefficients ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

L.H.S. =
$${}^{n}C_{r} + {}^{n}C_{r-1} = \frac{n!}{(n-r)! r!} + \frac{n!}{(n-r+1)! (r-1)!}$$

= $\frac{n!}{(n-r)! (r-1)!} \left[\frac{1}{r} + \frac{1}{n-r+1} \right]$
= $\frac{n!}{(n-r)! (r-1)!} \frac{(n+1)}{r(n-r+1)}$
= $\frac{(n+1)!}{(n-r+1)! r!} = {}^{n+1}C_{r} = R.H.S.$

(5) Ratio of two consecutive binomial coefficients

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(6)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n(n-1)}{r(r-1)} {}^{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2)\dots(n-(r-1))}{r(r-1)(r-2)\dots(2.1)}$$

Example # 13 : If $(1 + x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then show that (i) $C_0 + 4C_1 + 4^2C_2 + \dots + 4^n C_n = 5^n$. (ii) $3C_0 + 5C_1 + 7$. $C_2 + \dots + (2n+3) C_n = 2^n (n+3)$. $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}$ (iii) $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ Solution : (i) put x = 4 $C_0 + 4C_1 + 4^2C_2 + \dots + 4^n C_n = 5^n$. $L.H.S. = 3C_0 + 5C_1 + 7.C_2 + + (2n + 3)C_n$ (ii) $= \sum_{r=1}^{n} (2r+3) \cdot {}^{n}C_{r} = 2\sum_{r=1}^{n} r \cdot {}^{n}C_{r} + 3\sum_{r=1}^{n} {}^{n}C_{r}$ = $2n \sum_{r=1}^{n} {}^{n-1}C_{r-1} + 3 \sum_{r=1}^{n} {}^{n}C_{r} = 2n \cdot 2^{n-1} + 3 \cdot 2^{n} = 2^{n}(n+3)$ RHS I Method : By Summation (iii) L.H.S. = $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots + \frac{C_n}{n+1}$ $=\sum_{r=0}^{n} \cdot \frac{{}^{n}C_{r}}{r+1} = \frac{1}{n+1}\sum_{r=0}^{n} \cdot {}^{n+1}C_{r+1} \qquad \left\{\frac{n+1}{r+1} \cdot {}^{n}C_{r}\right\} = \frac{2^{n+1}-1}{n+1} \text{ R.H.S.}$ **II Method : By Integration** $(1 + x)^n = C_n + C_1 x + C_2 x^2 + \dots + C_n x^n$. Integrating both sides, within the limits 0 to 1. $\left[\frac{(1+x)^{n+1}}{n+1}\right]^{1} = \left[C_{0}x + C_{1}\frac{x^{2}}{2} + C_{2}\frac{x^{3}}{3} + \dots + C_{n}\frac{x^{n+1}}{n+1}\right]^{1}$ $\frac{2^{n+1}}{n+1} - \frac{1}{n+1} = \left(C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1}\right) - 0$ $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$ Proved **Example # 14 :** If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then prove that $C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n = {}^{2n}C_{n-1} \text{ or } {}^{2n}C_{n+1}$ (i) 1^{2} , $C_{1}^{2} + 2^{2}$, $C_{2}^{2} + 3^{2}$, $C_{3}^{2} + \dots + n^{2}C_{n}^{2}$, $= n^{2}$, ${}^{2n-2}C_{n-1}^{2}$ (ii) $(1 + x)^n = C_n + C_1 x + C_2 x^2 + \dots + C_n x^n.$ Solution : (i)(i) $(x + 1)^{n} = C_{0}x^{n} + C_{1}x^{n-1} + C_{2}x^{n-2} + \dots + C_{n}x^{0}$(ii) Multiplying (i) and (ii) $(C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n) (C_0 x^n + C_1 x^{n-1} + \dots + C_n x^0) = (1 + x)^{2n}$ Comparing coefficient of xⁿ⁻¹, $C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n = {}^{2n}C_{n-1} \text{ or } {}^{2n}C_{n+1}$(i) $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n.$ (ii) differentiating w.r.t x..... $n(1 + x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \dots + nC_n x^{n-1}$ multiplying by x..... $n x(1 + x)^{n-1} = C_1 x + 2C_2 x^2 + 3C_3 x^3 + \dots + nC_n x^n$ Now differentiate w.r.t. x..... $n(1 + x)^{n-1} + n(n-1)x.(1+x)^{n-2} = 1^{2}C_{1} + 2^{2}C_{2}x + 3^{2}C_{3}x^{2} + \dots + n^{2}C_{n}x^{n-1}$ (ii) $(x + 1)^{n} = C_{0}x^{n} + C_{1}x^{n-1} + C_{2}x^{n-2} + \dots + C_{n}x^{0}$(iii) multiplying (ii) & (iii) and comparing the cofficient of xⁿ⁻¹ $1^{2}. C_{1}^{2} + 2^{2}. C_{2}^{2} + 3^{2}. C_{3}^{2} + \dots + n^{2}C_{n}^{2} = n\left({}^{2n-1}C_{n-1} - {}^{2n-2}C_{n-2}\right) + n^{2}{}^{2n-2}C_{n-2}$ $= n^{2} 2^{n-2}C_{n-1} = R.H.S.$

Example # 15 : Find the summation of the following series -
(i) "C₃ + ""C₄ + ""C₄ + ""C₅ + + "C_m (ii) "C₃ + 2 . ""C₃ + 3 . ""C₃ + + n . ^{2m-1}C₃
Solution :
(i) 11 Method : Using property, "C₄ + ""C_m = ""C_m
"C₆ + ""C₄ + ""C₇ + ""C₇ + + "C_m
=
$$\frac{m+1}{C_{m+1}} \frac{m+1}{2} C_m$$
 + + "C_m = ""C_{m+1} + "C_m = "C_{m+1} + "C_m = ""C_{m+1} + "C_{m+1} + "C_m = ""C_{m+1} + "C_m + ""C_m = ""C_{m+1} + "C_m + "C_m + "C_m + "C_m + "C_m + "C_m = ""C_{m+1} + "C_m + "C_{m+1} + "C_m + "C_{m+1} + "C_m + "C_{m+1} + "C_m + "C_{m+1} + "

putting x = -i in (i) we get $(1 - i)^n = C_0 - C_1 i - C_2 + C_3 i + C_4 + \dots (-1)^n C_n i^n$ $2^{n/2} \left[\cos\left(-\frac{n\pi}{4}\right) + i \sin\left(-\frac{n\pi}{4}\right) \right] = (C_0 - C_2 + C_4 - \dots) - i(C_1 - C_3 + C_5 - \dots) \dots \dots (ii)$

2)

or

Equating the imaginary part in (ii) we get $C_1 - C_3 + C_5 - \dots = 2^{n/2} \sin \frac{n\pi}{4}$.

Self practice problems : (12) Prove the following

(12) Prove the following
(i)
$$5C_0 + 7C_1 + 9C_2 + \dots + (2n+5)C_n = 2^n (n+5)$$

(ii) $4C_0 + \frac{4^2}{2} \cdot C_1 + \frac{4^3}{3}C_2 + \dots + \frac{4^{n+1}}{n+1}C_n = \frac{5^{n+1} - 1}{n+1}$
(iii) ${}^{n}C_0 \cdot {}^{n+1}C_n + {}^{n}C_1 \cdot {}^{n}C_{n-1} + {}^{n}C_2 \cdot {}^{n-1}C_{n-2} + \dots + {}^{n}C_n \cdot {}^{1}C_0 = 2^{n-1} (n+1)$
(iv) ${}^{2}C_2 + {}^{3}C_2 + \dots + {}^{n}C_2 = {}^{n+1}C_3$

Binomial theorem for negative and fractional indices :

$$\begin{array}{ll} \text{If } n \in \mathsf{R}, \, \text{then} & (1+x)^n = 1 + nx + \frac{n(n-1)}{2 \; !} \; x^2 + \; \frac{n(n-1)(n-2)}{3 \; !} \; x^3 + \dots \\ & \\ \dots & + \; \frac{n(n-1)(n-2)\dots(n-r+1)}{r \; !} \; x^r + \dots & \infty. \end{array}$$

Remarks

- The above expansion is valid for any rational number other than a whole number if |x| < 1. (i)
- When the index is a negative integer or a fraction then number of terms in the expansion of (ii) $(1 + x)^n$ is infinite, and the symbol ⁿC, cannot be used to denote the coefficient of the general term.
- (iii) The first term must be unity in the expansion, when index 'n' is a negative integer or fraction

$$(x + y)^{n} = \begin{bmatrix} x^{n} \left(1 + \frac{y}{x}\right)^{n} = x^{n} \left\{1 + n \ \cdot \ \frac{y}{x} + \frac{n \ (n-1)}{2 \ !} \left(\frac{y}{x}\right)^{2} + \dots \right\} & \text{if } \left| \frac{y}{x} \right| < 1 \\ y^{n} \left(1 + \frac{x}{y}\right)^{n} = y^{n} \left\{1 + n \ \cdot \ \frac{x}{y} + \frac{n \ (n-1)}{2 \ !} \left(\frac{x}{y}\right)^{2} + \dots \right\} & \text{if } \left| \frac{x}{y} \right| < 1 \\ \text{The general term in the expansion of } (1 + x)^{n} \text{ is } T_{r+1} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r} x^{r}$$

(iv) r١ When 'n' is any rational number other than whole number then approximate value of $(1 + x)^n$ is (v)

- 1 + nx (x² and higher powers of x can be neglected)
- (vi) Expansions to be remembered (|x| < 1)
 - $(1 + x)^{-1} = 1 x + x^2 x^3 + \dots + (-1)^r x^r + \dots \infty$ (a)
 - (b) $(1 - x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots \infty$ (c)

(r + 1)th term in the expansion of $(1 - x)^{-n}$ can be written as

- $(1 + x)^{-2} = 1 2x + 3x^2 4x^3 + \dots + (-1)^r (r + 1) x^r + \dots \infty$
- $(1 x)^{-2} = 1 + 2x + 3x^{2} + 4x^{3} + \dots + (r + 1)x^{r} + \dots \infty$ (d)

Example # 17 : Prove that the coefficient of x^r in $(1 - x)^{-n}$ is $^{n+r-1}C_r$

$$\begin{split} T_{r+1} &= \frac{-n(-n-1)(-n-2).....(-n-r+1)}{r !} (-x)^r \\ &= (-1)^r \; \frac{n(n+1)(n+2).....(n+r-1)}{r !} (-x)^r = \frac{n(n+1)(n+2).....(n+r-1)}{r !} \; x^r \\ &= \frac{(n-1)! \; n(n+1).....(n+r-1)}{(n-1) ! \; r \; !} \; x^r \; \; \text{Hence, coefficient of } x^r \text{ is } \; \frac{(n+r-1)!}{(n-1)! \; r \; !} = {}^{n+r-1}C_r \; \text{Proved} \end{split}$$

Example-18: If x is so small such that its square and higher powers may be neglected, then find the value of $\frac{(1\!-\!2x)^{1/3}+(1\!+\!5x)^{-3/2}}{(9+x)^{1/2}}$

15v

Solution :

$$\frac{(1-2x)^{1/3}+(1+5x)^{-3/2}}{(9+x)^{1/2}} = \frac{1-\frac{2}{3}x+1-\frac{15x}{2}}{3\left(1+\frac{x}{9}\right)^{1/2}} = \frac{1}{3}\left(2-\frac{49}{6}x\right)\left(1+\frac{x}{9}\right)^{-1/2}$$

$$=\frac{1}{3}\left(2-\frac{49}{6}x\right)\left(1-\frac{x}{18}\right)=\frac{1}{2}\left(2-\frac{x}{9}-\frac{49}{6}x\right)=1-\frac{x}{18}-\frac{49}{12}x=1-\frac{149}{36}x$$

Self practice problems :

(13) Find the possible set of values of x for which expansion of $(3 - 2x)^{1/2}$ is valid in ascending powers of x.

(14) If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$
, then find the value of $y^2 + 2y$

(15) The coefficient of
$$x^{50}$$
 in $\frac{2-3x}{(1-x)^3}$ is
(A) 500 (B) 1000 (C) -1173 (D) 1173
Ans. (13) $x \in \left(-\frac{3}{2}, \frac{3}{2}\right)$ (14) 4 (15) C

Multinomial theorem : As we know the Binomial Theorem $(x + y)^n = \sum_{r=0}^n {}^nC_r \quad x^{n-r}y^r = \sum_{r=0}^n \frac{n!}{(n-r)! r!} x^{n-r}y^r$

 $(\mathbf{x} + \mathbf{y})^n = \sum_{r_1+r_2=0} \frac{n!}{r_1! r_2!} \mathbf{x}^{r_1} \cdot \mathbf{y}^{r_2}$ putting $n - r = r_1$, $r = r_2$ therefore,

Total number of terms in the expansion of $(x + y)^n$ is equal to number of non-negative integral solution of $r_1 + r_2 = n$ i.e. ${}^{n+2-1}C_{2-1} = {}^{n+1}C_1 = n+1$

In the same fashion we can write the multinomial theorem

$$(x_{1} + x_{2} + x_{3} + \dots x_{k})^{n} = \sum_{r_{1} + r_{2} + \dots + r_{k} = n} \frac{n!}{r_{1}! r_{2}! \dots r_{k}!} x_{1}^{r_{1}} \cdot x_{2}^{r_{2}} \dots x_{k}^{r_{k}}$$

Here total number of terms in the expansion of $(x_1 + x_2 + \dots + x_k)^n$ is equal to number of nonnegative integral solution of $r_1 + r_2 + \dots + r_k = n$ i.e. ^{n+k-1}C_{k-1}

Example #19: Find the coefficient of $a^2b^3c^4d$ in the expansion of $(a - b - c + d)^{10}$

Solution :

$$(a - b - c + d)^{10} = \sum_{r_1 + r_2 + r_3 + r_4 = 10} \frac{(10)!}{r_1! r_2! r_3! r_4!} (a)^{r_1} (-b)^{r_2} (-c)^{r_3} (d)^{r_4}$$

we want to get a² b³ c⁴ d this implies that $r_1 = 2, r_2 = 3, r_3 = 4, r_4 = 1$

$$\therefore \quad \text{coeff. of } a^2 b^3 c^4 d \text{ is } \frac{(10)!}{2! 3! 4! 1!} \quad (-1)^3 (-1)^4 = -12600$$

Example # 20 : In the expansion of $\left(1 + x + \frac{7}{x}\right)^{11}$, find the term independent of x.

Solut

sion:
$$\left(1+x+\frac{7}{x}\right)^{r_1} = \sum_{r_1+r_2+r_3=11} \frac{(11)!}{r_1! r_2! r_3!} (1)^{r_1} (x)^{r_2} \left(\frac{7}{x}\right)^{r_3}$$

The exponent 11 is to be divided among the base variables 1, x and $\frac{7}{x}$ in such a way so that we get x^0 . Therefore, possible set of values of (r_1, r_2, r_3) are (11, 0, 0), (9, 1, 1), (7, 2, 2), (5, 3, 3), (3, 4, 4), (1, 5, 5)

Hence the required term is

$$\begin{aligned} \frac{(11)!}{(11)!} (7^{\circ}) + \frac{(11)!}{9! \ 1 \ !1 \ !} 7^{1} + \frac{(11)!}{7! \ 2 \ ! \ 2 \ !} 7^{2} + \frac{(11)!}{5! \ 3 \ ! \ 3 \ !} 7^{3} + \frac{(11)!}{3! \ 4 \ ! \ 4 \ !} 7^{4} + \frac{(11)!}{1 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ !} 7^{5} \\ = 1 + \frac{(11)!}{9 \ ! \ 2 \ !} \cdot \frac{2 \ !}{1 \ ! \ 1 \ ! \ 7 \ ! \ 4 \ ! \ 7 \ ! \ 4 \ ! \ 2 \ ! \ 2 \ ! \ 7 \ ! \ 4 \ ! \ 7 \ ! \ 4 \ ! \ 1 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 7 \ ! \ 5 \ ! \ 5 \ ! \ 7 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ ! \ 7 \ ! \ 5 \ ! \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ ! \ 5 \ ! \ 5 \ ! \ 5 \ 1 \ 1 \ \ 5 \ 1 \ \ 5 \ \ 5 \ \ 5 \ \ 5 \ \ 5 \ \ 1 \ \ 5 \ \ 5 \ \ 5 \ \ 5 \ \ 1 \ \ \ 5 \ \ 5 \ \ 5 \ \ \ 5 \ \ 5 \ \ \ \ \ \ \ 5 \$$

Self practice problems :

Ans.

(16)The number of terms in the expansion of $(a + b + c + d + e)^n$ is (A) ⁿ⁺⁴C₄ (B) ⁿ⁺³C_n (C) ⁿ⁺⁵C_n (D) n + 1 Find the coefficient of $x^2 y^3 z^1$ in the expansion of $(x - 2y - 3z)^7$ (17)Find the coefficient of x^{17} in $(2x^2 - x - 3)^9$ (18) $(17) \frac{7!}{2! 3! 1!} 24$ (18) 2304 (16)A