Sequence & Series

"1729 is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways." S.Ramanujan

Sequence :

A sequence is a function whose domain is the set N of natural numbers. Since the domain for every sequence is the set N of natural numbers, therefore a sequence is represented by its range. If $f: N \rightarrow R$, then $f(n) = t_n$, $n \in N$ is called a sequence and is denoted by

 $\{f(1), f(2), f(3), \dots\} = \{t_1, t_2, t_3, \dots\} = \{t_n\}$

Real sequence :

A sequence whose range is a subset of R is called a real sequence.

- 2, 5, 8, 11, e.g. (i)
 - 4, 1, -2, -5, (ii)

Types of sequence :

On the basis of the number of terms there are two types of sequence.

- Finite sequences : A sequence is said to be finite if it has finite number of terms. (i)
- Infinite sequences : A sequence is said to be infinite if it has infinitely many terms. (ii)

Example #1: Write down the sequence whose nth term is $\frac{(-2)^n}{(-1)^n + 2}$

 $(-2)^{n}$

Solution :

Let
$$t_n = \frac{(-2)^n}{(-1)^n + 2}$$

put n = 1, 2, 3, 4, we get
 $t_1 = -2, t_2 = \frac{4}{3}, t_3 = -8, t_4 = \frac{16}{3}$
so the sequence is $-2, -8, \frac{16}{3},$

Series :

By adding or subtracting the terms of a sequence, we get an expression which is called a series. If $a_1, a_2, a_3, \dots, a_n$ is a sequence, then the expression $a_1 + a_2 + a_3 + \dots + a_n$ is a series.

e.g.

(i)	1 + 2 + 3 + 4 + + n
(ii)	2 + 4 + 8 + 16 +
(iii)	– 1 + 3 – 9 + 27 –

Progression :

The word progression refers to sequence or series - finite or infinite

Arithmetic progression (A.P.) :

A.P. is a sequence whose successive terms are obtained by adding a fixed number 'd' to the preceding terms. This fixed number 'd' is called the common difference. If a is the first term & d the common difference, then A.P. can be written as a, a + d, a + 2d,....., a + (n - 1)d,.....

– 4, – 1, 2, 5 e.g.

nth term of an A.P. :

Let 'a' be the first term and 'd' be the common difference of an A.P., then $t_n = a + (n - 1) d$, where $d = t_n - t_{n-1}$

Example #2: Find the number of terms in the sequence 4, 7, 10, 13,82. Solution : Let a be the first term and d be the common difference a = 4, d = 3 so 82 = 4 + (n - 1)3 \Rightarrow n = 27

The sum of first n terms of an A.P. :

If a is first term and d is common difference, then sum of the first n terms of AP is

$$\begin{split} S_n &= \frac{n}{2} \left[2a + (n-1) d \right] \\ &= \frac{n}{2} \left[a + \ell \right] \equiv nt_{\left(\frac{n+1}{2}\right)} \text{ , for n is odd. (Where } \ell \text{ is the last term and } t_{\left(\frac{n+1}{2}\right)} \text{ is the middle term.)} \end{split}$$

Note : For any sequence $\{t_n\}$, whose sum of first r terms is S_r , r^{th} term, $t_r = S_r - S_{r-1}$.

Example # 3: If in an A.P., 3rd term is 18 and 7 term is 30, then find sum of its first 17 terms Solution: Let a be the first term and d be the common difference a + 2d = 18 a + 6d = 30 d = 3, a = 12 $s_{17} = \frac{17}{2} [2 \times 12 + 16 \times 3] = 612$

Example # 4:Find the sum of all odd numbers between 1 and 1000 which are divisible by 3Solution :Odd numbers between 1 and 1000 are
3, 5, 7, 9, 11, 13, ----- 993, 995, 997, 999.
Those numbers which are divisible by 3 are
3, 9, 15, 21, ------ 993, 999
They form an A.P. of which a = 3 , d = 6, ℓ = 999 \therefore n = 167
 $S = \frac{n}{2} [a + \ell] = 83667$

Example # 5 : The ratio between the sum of n term of two A.P.'s is 3n + 8 : 7n + 15. Then find the ratio between their 12 th term

Solution :

$$\frac{S_n}{S_n'} = \frac{(n/2)[2a + (n-1)d]}{(n/2)[2a' + (n-1)d']} = \frac{3n+8}{7n+15} \text{ or } \frac{a + \{(n-1)/2\}d}{a' + (n-1)/2d'} = \frac{3n+8}{7n+15}$$
(i)
we have to find $\frac{T_{12}}{T_{12}'} = \frac{a+11d}{a' + 11d'}$
choosing $(n-1)/2 = 11$ or $n = 23$ in (1),
we get $\frac{T_{12}}{T_{12}'} = \frac{a+11d}{a' + 11d'} = \frac{3(23)+8}{(23)\times7+15} = \frac{77}{176} = \frac{7}{16}$

Example # 6 : If sum of n terms of a sequence is given by $S_n = 3n^2 - 4n$, find its 50th term. **Solution :** Let t_n is nth term of the sequence so $t_n = S_n - S_{n-1}$. $= 3n^2 - 4n - 3(n-1)^2 + 4(n-1) = 6n - 7$ so $t_{so} = 293$.

Self practice problems :

- (1) Which term of the sequence 2005, 2000, 1995, 1990, 1985, is the first negative term
- (2) For an A.P. show that $t_m + t_{2n+m} = 2 t_{m+n}$
- (3) Find the maximum sum of the A.P. 40 + 38 + 36 + 34 + 32 +
- (4) Find the sum of first 16 terms of an A.P. a_1, a_2, a_3 If it is known that $a_1 + a_4 + a_7 + a_{10} + a_{13} + a_{16} = 147$

Ans. (1) 403 (3) 420 (4) 392

Remarks: The first term and common difference can be zero, positive or negative (or any (i) complex number.) (ii) If a, b, c are in A.P. \Rightarrow 2 b = a + c & if a, b, c, d are in A.P. \Rightarrow a + d = b + c. Three numbers in A.P. can be taken as a - d, a, a + d; four numbers in A.P. can be taken as a (iii) -3d, a - d, a + d, a + 3d; five numbers in A.P. are a - 2d, a - d, a, a + d, a + 2d; six terms in A.P. are a - 5d, a - 3d, a - d, a + d, a + 3d, a + 5d etc. The sum of the terms of an A.P. equidistant from the beginning & end is constant and equal to (iv) the sum of first & last terms. Any term of an A.P. (except the first) is equal to half the sum of terms which are equidistant (v) from it. $a_n = 1/2 (a_{n-k} + a_{n+k}), k < n$. For $k = 1, a_n = (1/2) (a_{n-1} + a_{n+1});$ For k = 2, $a_n = (1/2) (a_{n-2} + a_{n+2})$ and so on. (vi) If each term of an A.P. is increased, decreased, multiplied or divided by the same non-zero number, then the resulting sequence is also an AP. (vii) The sum and difference of two AP's is an AP. **Example #7**: The numbers t (t² + 1), $-\frac{t^2}{2}$ and 6 are three consecutive terms of an A.P. If t be real, then find the the next two term of A.P. 2b = a + cSolution : $-t^2 = t^3 + t + 6$ \Rightarrow $t^3 + t^2 + t + 6 = 0$ or $(t + 2) (t^2 - t + 3) = 0$ $t^2 - t + 3 \neq 0$ or *.*.. \Rightarrow t = -2 the given numbers are -10, -2, 6which are in an A.P. with d = 8. The next two numbers are 14, 22 **Example #8:** If a_1 , a_2 , a_3 , a_4 , a_5 are in A.P. with common difference $\neq 0$, then find the value of $\sum_{i=1}^{n} a_i$, when $a_3 = 2$. Solution : As a_1, a_2, a_3, a_4, a_5 are in A.P., we have $a_1 + a_5 = a_2 + a_4 = 2a_3$. Hence $\sum_{i=1}^{5} a_i = 10$. **Example # 9 :** If a(b + c), b(c + a), c(a + b) are in A.P., prove that $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P. Solution : \therefore a(b + c), b(c + a), c(a + b) are in A.P. \Rightarrow subtract ab + bc + ca from each - bc, - ca, - ab are in A.P. divide by -abc $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. **Example # 10 :** If $\frac{a+b}{1-ab}$, b, $\frac{b+c}{1-bc}$ are in A.P. then prove that $\frac{1}{a}$, b $\frac{1}{c}$ are in A.P. $\frac{a+b}{1-ab}$, b, $\frac{b+c}{1-bc}$ are in A.P. Solution : ... $b - \frac{a+b}{1-ab} = \frac{b+c}{1-bc} - b$ $\frac{-a(b^2+1)}{1-ab} = \frac{c(1+b^2)}{1-bc}$ -a + abc = c - abc \Rightarrow a + c = 2abcdivide by ac $\frac{1}{c} + \frac{1}{a} = 2b$ \Rightarrow $\frac{1}{a}$, b, $\frac{1}{c}$ are in A.P.

Arithmetic mean (mean or average) (A.M.) :

If three terms are in A.P. then the middle term is called the A.M. between the other two, so if a, b, c are in A.P., b is A.M. of a & c.

A.M. for any n numbers $a_1, a_2, ..., a_n$ is; $A = \frac{a_1 + a_2 + a_3 + + a_n}{2}$.

n-Arithmetic means between two numbers :

If a, b are any two given numbers & a, A_1 , A_2 ,..., A_n , b are in A.P., then A_1 , A_2 ,... A_n are the n A.M.'s between a & b.

 $A_1 = a + \frac{b-a}{n+1}$, $A_2 = a + \frac{2(b-a)}{n+1}$,...., $A_n = a + \frac{n(b-a)}{n+1}$

Note: Sum of n A.M.'s inserted between a & b is equal to n times the single A.M. between a & b

i.e.
$$\sum_{r=1}^{n} A_r = nA$$
, where A is the single A.M. between a & b i.e. $A = \frac{a+b}{2}$

Example # 11 : If a, b, c,d,e, f are A. M's between 2 and 12, then find a + b + c + d + e + f.

Solution : Sum of A.M.^s = 6 single A.M. =
$$\frac{6(2+12)}{2} = 42$$

Example # 12 : Insert 10 A.M. between 3 and 80.

Solution : Here 3 is the first term and 80 is the 12th term of A.P. so 80 = 3 + (11)d $\Rightarrow d = 7$ so the series is 3, 10, 17, 24,, 73, 80 \therefore required means are 10, 17, 24,, 73.

Self practice problems :

(5) There are n A.M.'s between 3 and 29 such that 6th mean : (n - 1)th mean : : 3 : 5 then find the value of n.

(6) For what value of n, $\frac{a^{n+3} + b^{n+3}}{a^{n+2} + b^{n+2}}$, a \neq b is the A.M. of a and b. **Ans.** (5) n = 12 (6) n = -2

Geometric progression (G.P.) :

(i)

G.P. is a sequence of numbers whose first term is non zero & each of the succeeding terms is equal to the preceeding terms multiplied by a constant. Thus in a G.P. the ratio of successive terms is constant. This constant factor is called the **common ratio** of the series & is obtained by dividing any term by that which immediately preceeds it. Therefore a, ar, ar², ar³, ar⁴,..... is a G.P. with 'a' as the first term & 'r' as common ratio.

e.g. (i) 2, 4, 8, 16, (ii) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \dots$

Results :

(ii) Sum of the first n terms of GP

 n^{th} term of GP = a r^{n-1}

$$S_{n} = \begin{cases} \frac{a(r^{n} - 1)}{r - 1} , r \neq 1 \\ na , r = 1 \end{cases}$$

(iii) Sum of an infinite terms of GP when |r| < 1. When $n \to \infty$, $r^n \to 0$ if |r| < 1 therefore, $S_{\infty} = \frac{a}{1-r} (|r| < 1)$

Example # 13 : The nth term of the series 3, $\sqrt{3}$, 1 , ----- is $\frac{1}{243}$, then find n

Solution : $3 \cdot \left(\frac{1}{\sqrt{3}}\right)^{n-1} = \frac{1}{243} \Rightarrow n = 13$

Example # 14 : The first term of an infinite G.P. is 1 and any term is equal to the sum of all the succeeding terms. Find the series.
 Solution : Let the G.P. be 1, r, r², r³,

given condition \Rightarrow $r = \frac{r^2}{1-r} \Rightarrow$ $r = \frac{1}{2}$, Hence series is 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$,∞

Example # 15 : In a G.P., $T_2 + T_5 = 216$ and $T_4 : T_6 = 1 : 4$ and all terms are integers, then find its first term :

Solution :

$$\begin{array}{l} \text{ar} (1+r^3)=216 \text{ and } \frac{ar^3}{ar^5}=\frac{1}{4} \\ \Rightarrow \qquad r^2=4\Rightarrow r=\pm 2 \\ \text{when } r=2 \text{ then } 2a(9)=216\Rightarrow a=12 \\ \text{when } r=-2, \text{ then } -2a (1-8)=216 \\ \therefore \qquad a=\frac{216}{14}=\frac{108}{7} \text{ , which is not an integer.} \end{array}$$

Self practice problems :

- (7) Find the G.P. if the common ratio of G.P. is 3, n^{th} term is 486 and sum of first n terms is 728.
- (8) If x, 2y, 3z are in A.P. where the distinct numbers x, y, z are in G.P. Then find the common ratio of G.P.
- (9) A G.P. consist of 2n terms. If the sum of the terms occupying the odd places is S_1 and that of the terms occupying the even places is S_2 , then find the common ratio of the progression.
- (10) If continued prodcut of three number in G.P. is 216 and sum of there product in pairs is 156. Find the numbers.

Ans.	(7)	2, 6, 18, 54, 162, 486	(8) $\frac{1}{3}$	(9) $\frac{S_2}{S_1}$.
Ans.	(7)	2, 6, 18, 54, 162, 486	(8) -3	(9) $\frac{1}{S_1}$

(10) 2, 6, 18

Remarks :

(i) If a, b, c are in G.P. \Rightarrow b² = ac, in general if a₁, a₂, a₃, a₄,.....a_{n-1}, a_n are in G.P., then a₁a_n = a₂a_{n-1} = a₃ a_{n-2} =

(ii) Any three consecutive terms of a G.P. can be taken as $\frac{a}{r}$, a, ar.

(iii) Any four consecutive terms of a G.P. can be taken as,
$$\frac{a}{r^3}$$
, $\frac{a}{r}$ ar, ar³.

- (iv) If each term of a G.P. be multiplied or divided or raised to power by the same non-zero quantity, the resulting sequence is also a G.P..
- (v) If a_1, a_2, a_3, \dots and b_1, b_2, b_3, \dots are two G.P's with common ratio r_1 and r_2 respectively, then the sequence $a_1b_1, a_2b_2, a_3b_3, \dots$ is also a G.P. with common ratio $r_1 r_2$.
- (vi) If a_1, a_2, a_3, \dots are in G.P. where each $a_1 > 0$, then $\log a_1, \log a_2, \log a_3, \dots$ are in A.P. and its converse is also true.

Example # 16 : Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of G.P. is :

Solution :	Three number in G.P. are $\frac{a}{r}$, a, ar		
	then $\frac{a}{r}$, 2a ar are in A.P. as given.		
	$\therefore \qquad 2(2a) = a\left(r + \frac{1}{r}\right)$		
	or $r^2 - 4r + 1 = 0$		
	or $r = 2 \pm \sqrt{3}$		
	or $r = 2 + \sqrt{3}$ as r > 1 for an increasing G.P.		
Example # 17 : The sum of an infinite geometric progression is 2 and the sum of the geometric progression made from the cubes of this infinite series is 24. Then find its first term and common ratio :			
Solution :	Let a be the first term and r be the common ratio of G.P.		
	$\frac{a}{1-r} = 2, \frac{a^3}{1-r^3} = 24, -1 < r < 1$		
	Solving we get a = 3, r = $-\frac{1}{2}$		
Example # 18 : Express 0.423 in the form of $\frac{p}{q}$, (where p, q \in I, q \neq 0)			

Solution : $S = \frac{4}{10} + \frac{23}{10^3} + \frac{23}{10^5} + \dots \infty = \frac{4}{10} + \frac{a}{1-r} = \frac{4}{10} + \frac{23}{990} = \frac{419}{990}$

Example # 19 : Evaluate 9 + 99 + 999 + upto n terms.

Solution : Let $S = 9 + 99 + 999 + \dots$ upto n terms. = $[9 + 99 + 999 + \dots]$ = $[(10 - 1) + (10^2 - 1) + (10^3 - 1) + \dots + upto n terms]$ = $[10 + 10^2 + 10^3 + \dots + 10^n - n] = \left(\frac{10(10^n - 1)}{9} - n\right)$

Geometric means (mean proportional) (G.M.):

If a, b, c are in G.P., b is called as the G.M. of a & c.

If a and c are both positive, then $b = \sqrt{ac}$ and if a and c are both negative, then $b = -\sqrt{ac}$. $b^2 = ac$, therefore $b = \sqrt{ac}$; a > 0, c > 0.

n-Geometric means between a, b :

If a, b are two given numbers & a, G_1 , G_2 ,...., G_n , b are in G.P.. Then G_1 , G_2 , G_3 ,..., G_n are n G.M.s between a & b.

 $G_1 = a(b/a)^{1/n+1}, G_2 = a(b/a)^{2/n+1},..., G_n = a(b/a)^{n/n+1}$

Note : The product of n G.M.s between a & b is equal to the nth power of the single G.M. between a & b

i.e.
$$\prod_{r=1}^{n} G_r = (\sqrt{ab})^n = G^n$$
, where G is the single G.M. between a & b.

Example # 20 : Between 4 and 2916 are inserted odd number (2n + 1) G.M's. Then the (n + 1)th G.M. is **Solution :** 4, G₁, G₂, ..., G_{n+1}, ..., G_{2n}, G_{2n+1}, 2916

 $\rm G_{_{n+1}}$ will be the middle mean of (2n +1) odd means and it will be equidistant from 1st and last term

- \therefore 4,G_{n+1}, 2916 will also be in G.P.
- $\therefore \qquad G_{n+1}^2 = 4 \times 2916 = 4 \times 9 \times 324 = 4 \times 9 \times 4 \times 81$
 - $G_{n+1} = 2 \times 3 \times 2 \times 9 = 108.$

Self practice problems :

- Find the value of n so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be the G.M. between a and b. (11)
- If a = 1111, $b = 1 + 10 + 10^2 + 10^3 + 10^4$ and $c = 1 + 10^5 + 10^{10} + + 10^{50}$, then prove (12)that
 - (i) 'a' is a composite number (ii) a = bc.

Ans.

(11) $n = -\frac{1}{2}$

Harmonic progression (H.P.)

A sequence is said to be in H.P if the reciprocals of its terms are in A.P.. If the sequence a₁, a₂, a₃,..., a_n is in H.P. then $1/a_1$, $1/a_2$,..., $1/a_n$ is in A.P.

Here we do not have the formula for the sum of the n terms of an H.P.. For H.P. whose first Note : (i) term is a and second term is b, the nth term is $t_n = \frac{ab}{b + (n-1)(a-b)}$.

(ii) If a, b, c are in H.P.
$$\Rightarrow$$
 b = $\frac{2ac}{a+c}$ or $\frac{a}{c} = \frac{a-b}{b-c}$.

If a, b, c are in A.P. $\Rightarrow \frac{a-b}{b-c} = \frac{a}{a}$ (iii) If a, b, c are in G.P. $\Rightarrow \frac{a-b}{b-c} = \frac{a}{b}$ (iv)

Harmonic mean (H.M.):

If a, b, c are in H.P., b is called as the H.M. between a & c, then b = $\frac{2ac}{a+c}$

If a_1 , a_2 , a_n are 'n' non-zero numbers then H.M. 'H' of these numbers is given by

 $\frac{1}{H} = \frac{1}{n} \left| \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right|$

Example # 21 : The 7th term of a H.P. is $\frac{1}{10}$ and 12th term is $\frac{1}{25}$, find the 20th term of H.P. Let a be the first term and d be the common difference of corresponding A.P. Solution :

a + 6d = 10a + 11d = 25 5d = 15 d = 3, a = -8 $T_{20} = a + 19d$ $= -8 + 19 \times 3 = 49$ 20 term of H.P. = $\frac{1}{49}$

Example # 22 : Insert 4 H.M between $\frac{3}{4}$ and $\frac{3}{19}$.

Solution : Let 'd' be the common difference of corresponding A.P..

so
$$d = \frac{\frac{19}{3} - \frac{4}{3}}{5} = 1.$$

 $\therefore \qquad \frac{1}{H_1} = \frac{4}{3} + 1 = \frac{7}{3} \qquad \text{or} \qquad H_1 = \frac{3}{7}$
 $\frac{1}{H_2} = \frac{4}{3} + 2 = \frac{10}{3} \qquad \text{or} \qquad H_2 = \frac{3}{10}$

$\frac{1}{H_3} = \frac{4}{3} + 3 = \frac{13}{3}$	or	$H_{3} = \frac{3}{13}$
$\frac{1}{H_4} = \frac{4}{3} + 4 = \frac{16}{3}$	or	$H_{_4}=\frac{3}{16}.$

Example # 23 : Find the largest positive term of the H.P., whose first two term are $\frac{2}{5}$ and $\frac{12}{23}$.

Solution : The corresponding A.P. is $\frac{5}{2}$, $\frac{23}{12}$ or $\frac{30}{12}$, $\frac{23}{12}$, $\frac{16}{12}$, $\frac{9}{12}$, $\frac{2}{12}$, $\frac{-5}{12}$ The H.P. is $\frac{12}{30}$, $\frac{12}{23}$, $\frac{12}{16}$, $\frac{12}{9}$, $\frac{12}{2}$, $-\frac{12}{5}$, Largest positive term = $\frac{12}{2}$ = 6

Self practice problems :

- (13) If a, b, c, d, e are five numbers such that a, b, c are in A.P., b, c, d are in G.P. and c, d, e are in H.P. prove that a, c, e are in G.P.
- (14) If the ratio of H.M. between two positive numbers 'a' and 'b' (a > b) is to their G.M. as 12 to 13, prove that a : b is 9 : 4.
- (15) a, b, c are in H.P. then prove that $\frac{b+a}{b-a} + \frac{b+c}{b-c} = 2$
- (16) If a, b, c, d are in H.P., then show that ab + bc + cd = 3ad

Arithmetico-geometric series :

A series, each term of which is formed by multiplying the corresponding terms of an A.P. & G.P. is called the Arithmetico-Geometric Series. e.g. $1 + 3x + 5x^2 + 7x^3 + \dots$ Here 1, 3, 5,.... are in A.P. & 1, x, x^2 , x^3 are in G.P..

Sum of n terms of an arithmetico-geometric series: Let $S_n = a + (a + d) r + (a + 2 d) r^2 + \dots + [a + (n - 1)d] r^{n-1}$, then

$$S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r} \ , \ r \neq 1$$

 $x = \frac{4n+1}{1}$ then

Sum to infinity: If $|\mathbf{r}| < 1 \& n \to \infty$, then Limit $\mathbf{r}^n = 0$ and Limit $n.\mathbf{r}^n = 0$

$$\therefore \qquad \mathbf{S}_{\mathbf{\infty}} = \frac{\mathbf{a}}{1-\mathbf{r}} + \frac{\mathbf{dr}}{\left(1-\mathbf{r}\right)^2}$$

Example # 24 : The sum to n terms of the series $1 + 5\left(\frac{4n+1}{4n-3}\right) + 9\left(\frac{4n+1}{4n-3}\right)^2 + 13\left(\frac{4n+1}{4n-3}\right)^3 + \dots$ is .

Solution :

$$1 - x = \frac{-4}{4n-3}, \frac{1}{1-x} = -\frac{(4n-3)}{4}$$

$$\frac{1 - x}{1-x} = -\frac{(4n+1)}{4}$$

$$\frac{x}{1-x} = -\frac{(4n+1)}{4}$$

$$S = 1 + 5x + 9x^{2} + \dots + (4n-3)x^{n-1}$$

$$Sx = x + 5x^{2} + \dots + (4n-3)x^{n}$$

$$S - Sx = 1 + 4x + 4x^{2} + \dots + 4x^{n-1} - (4n-3)x^{n}$$

$$S(1-x) = 1 + \frac{4x}{1-x} \left[1 - x^{n-1}\right] - (4n-3)x^{n}$$

$$S = \frac{1}{1-x} \left[1 + \frac{4x}{1-x} - \frac{4x^{n}}{1-x} - (4n-3)x^{n}\right] = -\frac{(4n-3)}{4} \left[1 - (4n+1) + (4n-3)x^{n} - (4n-3)x^{n}\right] = n (4n-3).$$

Example # 25 : Find sum to infinite terms of the series $1 + 2x + 3x^2 + 4x^3 + \dots, -1 < x < 1$ Solution : let $S = 1 + 2x + 3x^2 + 4x^3 + \dots$ (i) $xS = x + 2x^2 + 3x^3 + \dots$ (ii) (i) - (ii) $\Rightarrow (1 - x) S = 1 + x + x^2 + x^3 + \dots$ (ii) or $S = \frac{1}{(1 - x)^2}$

Example # 26 : Evaluate : $1^2 + 2^2x + 3^2x^2 + 4^2x^3$ upto infinite terms for |x| < 1. **Solution :** Let $s = 1^2 + 2^2x + 3^2x^2 + 4^2x^3$ ∞ (i)

Let
$$x_{3} = 1 + 2x + 3x + 4x + 3x + 5x + 4x + 5x + 5x + 5x + 5x + 5x + 2x + 7x^{3} +(ii)$$

(i) - (ii)
(1 - x) s = 1 + 3x + 5x^{2} + 7x^{3} +(ii)
(1 - x) s = $\frac{1}{1 - x} + \frac{2x}{(1 - x)^{2}}$
 $s = \frac{1}{(1 - x)^{2}} + \frac{2x}{(1 - x)^{3}}$
 $s = \frac{1 - x + 2x}{(1 - x)^{3}}$
 $s = \frac{1 + x}{(1 - x)^{3}}$

Self practice problems :

- (17) If $4 + \frac{4+d}{5} + \frac{4+2d}{5^2}$ = 1, then find d.
- (18) Evaluate : $1 + 3x + 6x^2 + 10x^3 + \dots$ upto infinite term, where |x| < 1.

(19) Sum to n terms of the series :
$$1 + 2\left(1 + \frac{1}{n}\right) + 3\left(1 + \frac{1}{n}\right)^2 + \dots$$

Ans. (17) $-\frac{64}{n}$

s. (17)
$$-\frac{31}{5}$$

(18) $\frac{1}{(1-x)^3}$
(19) n^2

Relation between means :

(i) If A, G, H are respectively A.M., G.M., H.M. between a & b both being positive, then $G^2 = AH$ (i.e. A, G, H are in G.P.) and $A \ge G \ge H$.

Example # 27 : The A.M. of two numbers exceeds the G.M. by 2 and the G.M. exceeds the H.M. by $\frac{8}{5}$; find the

Solution :numbers.Let the numbers be a and b, now using the relation $G^2 = AH = (G + 2)$ $\left(G - \frac{8}{5}\right) \Rightarrow G = 8$; A = 10i.e.ab = 64alsoa + b = 20Hence the two numbers are 4 and 16.

$A.M. \geq G.M. \geq H.M.$

Let $a_1, a_2, a_3, \dots, a_n$ be n positive real numbers, then we define their

$$\begin{split} A.M. &= \frac{a_1 + a_2 + a_3 + \dots + a_n}{n} \text{, their} \\ G.M. &= (a_1 a_2 a_3 \dots a_n)^{1/n} \text{ and their} \\ H.M. &= \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \text{.} \end{split}$$

It can be shown that A.M. \geq G.M. \geq H.M. and equality holds at either places iff $a_1 = a_2 = a_3 = \dots = a_n$

Example # 28 : If a, b, c > 0, prove that $\frac{ab}{c^2} + \frac{bc}{a^2} + \frac{ca}{b^2} \ge 3$

Solution : Using the relation A.M. \ge G.M. we have $\frac{\frac{ab}{c^2} + \frac{bc}{a^2} + \frac{ca}{b^2}}{3} \ge \left(\frac{ab}{c^2} \cdot \frac{bc}{a^2} \cdot \frac{ca}{b^2}\right)^{\frac{1}{3}} \implies \frac{ab}{c^2} + \frac{bc}{a^2} + \frac{ca}{b^2} \ge 3$

Example # 29 : If $a_i > 0 \forall i = 1, 2, 3, \dots$ prove that $(a_1 + a_2 + a_3 \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \dots + \frac{1}{a_n} \right) \ge n^2$

Solution : Using the relation $A.M. \ge H.M.$

$$\frac{a_{1} + a_{2} + a_{3} \dots + a_{n}}{n} \ge \frac{n}{\frac{1}{a_{1}} + \frac{1}{a_{2}} + \frac{1}{a_{3}} \dots + \frac{1}{a_{n}}}$$
$$\Rightarrow \qquad (a_{1} + a_{2} + a_{3} \dots + a_{n}) \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} + \frac{1}{a_{3}} \dots + \frac{1}{a_{n}}\right) \ge n^{2}$$

Example # 30 : If x, y, z are positive then prove that $(x + y)(y + z)(z + x)\left(\frac{1}{x} + \frac{1}{y}\right)\left(\frac{1}{y} + \frac{1}{z}\right)\left(\frac{1}{z} + \frac{1}{x}\right) \ge 64$ **Solution :** Using the relation A.M. \ge H.M.

$$\frac{x+y}{2} \ge \frac{2}{\frac{1}{x}+\frac{1}{y}} \Longrightarrow \qquad (x+y)\left(\frac{1}{x}+\frac{1}{y}\right) \ge 4 \qquad \dots (i)$$

similarly $(y+z)\left(\frac{1}{y}+\frac{1}{z}\right) \ge 4 \qquad \dots (ii)$
 $(z+x) \ge 4\left(\frac{1}{z}+\frac{1}{x}\right) \qquad \dots (iii)$
by (i), (ii) & (iii) $(x+y)(y+z)(z+x)\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right) \ge 4$

Example # 31 : If n > 0, prove that $2^n > 1 + n\sqrt{2^{n-1}}$

64

Equality does not hold as all the numbers are not equal.

$$\Rightarrow \qquad \frac{2^{n}-1}{2-1} > n \left(2^{\frac{(n-1)n}{2}}\right)^{\frac{1}{n}} \Rightarrow \qquad 2^{n}-1 > n \ 2^{\frac{(n-1)}{2}}$$
$$\Rightarrow \qquad 2^{n} > 1 + n \ 2^{\frac{(n-1)}{2}}.$$

Example # 32 : If x, y, z are positive and x + y + z = 7 then find greatest value of $x^2 y^3 z^2$.

 $\label{eq:solution} \textbf{Solution:} \qquad \textbf{Using the relation A.M.} \geq \textbf{G.M.}$

$$\frac{\frac{x}{2} + \frac{x}{2} + \frac{y}{3} + \frac{y}{3} + \frac{y}{3} + \frac{z}{2} + \frac{z}{2}}{7} \ge \left(\frac{x^2}{4}, \frac{y^3}{27}, \frac{z^2}{4}\right)^{\frac{1}{7}}$$
$$\Rightarrow \qquad 1 \ge \left(\frac{x^2}{4}, \frac{y^3}{27}, \frac{z^2}{4}\right)^{\frac{1}{7}} \qquad \Rightarrow \qquad 432 \ge x^2 y^3 z^2$$

Self practice problems :

- (20) If a, b, c are real and distinct, then show that $a^2 (1 + b^2) + b^2 (1 + c^2) + c^2 (1 + a^2) > 6abc$
- (21) Prove that 2.4.6.8.....2n < $(n + 1)^n$. $(n \in N)$

(22) If a, b, c, d are positive real numbers prove that $\frac{bcd}{a^2} + \frac{cda}{b^2} + \frac{dab}{c^2} + \frac{abc}{d^2} > a + b + c + d$

(23) If $x^6 - 12x^5 + ax^4 + bx^3 + cx^2 + dx + 64 = 0$ has positive roots then find a, b, c, d,

(24) If a, b > 0, prove that
$$[(1 + a) (1 + b)]^3 > 3^3 a^2 b^2$$

Ans. (23) a = 60, b = -160, c = 240, d = -192

Results :

(i) $\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$. (ii) $\sum_{r=1}^{n} k a_r = \sum_{r=1}^{n} k a_r$.

(iii)
$$\sum_{r=1}^{n} k = k + k + k + \dots \dots n \text{ times} = nk; \text{ where } k \text{ is a constant.}$$

(iv)
$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

(v)
$$\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(vi)
$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2 (n+1)^2}{4}$$

Example # 33 : Find the sum of the series to n terms whose n^{th} term is 3n + 2.

Solution :
$$S_n = \Sigma T_n = \Sigma (3n + 2) = 3\Sigma n + \Sigma 2$$
 $= \frac{3(n+1)}{2} + 2n = \frac{n}{2} (3n + 7)$

Example # 34 :
$$T_k = k^3 + 3^k$$
, then find $\sum_{k=1}^n T_k$.

Solution :

$$\sum_{k=1}^{n} T_{k} = \sum_{k=1}^{n} k^{3} + \sum_{k=1}^{n} 3^{k} = \left(\frac{n(n+1)}{2}\right)^{2} + \frac{3(3^{n}-1)}{3-1} = \left(\frac{n(n+1)}{2}\right)^{2} + \frac{3}{2} (3^{n}-1)$$

Method of difference for finding nth term :

Let u_1 , u_2 , u_3 be a sequence, such that $u_2 - u_1$, $u_3 - u_2$, is either an A.P. or a G.P. then nth term u_3 of this sequence is obtained as follows

$$\begin{split} S &= u_1 + u_2 + u_3 + \dots + u_n & \dots + u_n \\ S &= u_1 + u_2 + \dots + u_{n-1} + u_n & \dots + (ii) \\ (i) - (ii) & \Rightarrow u_n = u_1 + (u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1}) \end{split}$$

Where the series $(u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1})$ is either in A.P. or in G.P. then we can find u_n . So sum of series $S = \sum_{n=1}^{n} u_n$

Note: The above method can be generalised as follows :

Let u_1 , u_2 , u_3 , be a given sequence.

The first differences are $\Delta_1 u_1, \Delta_1 u_2, \Delta_1 u_3, \dots$ where $\Delta_1 u_1 = u_2 - u_1, \Delta_1 u_2 = u_3 - u_2$ etc.

The second differences are $\Delta_2 u_1, \Delta_2 u_2, \Delta_2 u_3, \dots, where \Delta_2 u_1 = \Delta_1 u_2 - \Delta_1 u_1, \Delta_2 u_2 = \Delta_1 u_3 - \Delta_1 u_2$ etc.

This process is continued untill the k^{th} differences $\Delta_k u_1$, $\Delta_k u_2$, are obtained, where the k^{th} differences are all equal or they form a GP with common ratio different from 1.

Case - 1 : The kth differences are all equal.

In this case the nth term, u_n is given by

 $u_n = a_0 n^k + a_1 n^{k-1} + \dots + a_k$, where a_0, a_1, \dots, a_k are calculated by using first 'k + 1' terms of the sequence.

<u>**Case - 2</u>**: The kth differences are in GP with common ratio r (r \neq 1) The nth term is given by u_n = λ rⁿ⁻¹ + a₀ n^{k-1} + a₁ n^{k-2} + + a_{k-1}</u>

Example # 35 : Find the nth term of the series 1, 3, 8, 16, 27, 41,

Solution:

$$s = 1 + 3 + 8 + 16 + 27 + 41 + \dots T_{n} \qquad \dots (i)$$

$$s = 1 + 3 + 8 + 16 + 27 \dots T_{n-1} + T_{n} \qquad \dots (ii)$$

$$(i) - (ii)$$

$$T_{n} = 1 + 2 + 5 + 8 + 11 + \dots (T_{n} - T_{n-1})$$

$$T_{n} = 1 + \left(\frac{n-1}{2}\right) \left[2 \times 2 + (n-2)3\right] = \frac{1}{2} \left[3n^{2} - 5n + 4\right]$$

Example # 36 : Find the sum to n terms of the series 5, 7, 13, 31, 85 +

Solution : Successive difference of terms are in G.P. with common ratio 3. $T_n = a(3)^{n-1} + b$ a + b = 5 $3a + b = 7 \implies a = 1, b = 4$ $T_n = 3^{n-1} + 4$ $S_n = \Sigma T_n = \Sigma(3^{n-1} + 4) = (1 + 3 + 3^2 + \dots + 3^{n-1}) + 4n$ $\frac{1}{2} [3^n + 8n - 1]$

Method of difference for finding s_n:

If possible express rth term as difference of two terms as $t_r = \pm (f(r) - f(r \pm 1))$. This can be explained with the help of examples given below.

$$t_{1} = f(1) - f(0),$$

$$t_{2} = f(2) - f(1),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$t_{n} = f(n) - f(n-1)$$

⇒
$$S_{n} = f(n) - f(0)$$

Example # 37 : Find the sum of n-terms of the series 2.5 + 5.8 + 8.11 +

Solution:

$$T_{r} = (3r - 1) (3r + 2) = 9r^{2} + 3r - 2$$

$$S_{n} = \sum_{r=1}^{n} T_{r} = 9 \sum_{r=1}^{n} T_{r} + 3 \sum_{r=1}^{n} r - \sum_{r=1}^{n} 2$$

$$= 9 \left(\frac{n(n+1)(2n+1)}{6} \right) + 3 \left(\frac{n(n+1)}{2} \right) - 2n$$

Example # 38 : Sum to n terms of the series $\frac{1}{(1+x)(1+3x)} + \frac{1}{(1+3x)(1+5x)} + \frac{1}{(1+5x)(1+7x)} + \dots$ Solution : Let T, be the general term of the series

$$T_{r} = \frac{1}{\left[1 + (2r - 1)x\right]\left[1 + (2r + 1)x\right]}$$

So
$$T_{r} = \frac{1}{2x} \left[\frac{(1 + (2r + 1)x) - (1 + (2r - 1)x)}{(1 + (2r - 1)x)(1 + (2r + 1)x)}\right] = \left[\frac{1}{(1 + (2r - 1)x)} - \frac{1}{(1 + (2r + 1)x)}\right]$$

$$\therefore \qquad S_{n} = \sum T_{r} = T_{1} + T_{2} + T_{3} + \dots + T_{n}$$

$$= \frac{1}{2x} \left[\frac{1}{1 + x} - \frac{1}{(1 + (2n + 1)x)}\right] = \frac{n}{(1 + x)[1 + (2n + 1)x]}$$

1

Example # 39 : Sum to n terms of the series $\frac{1}{1.4.7} + \frac{1}{4.7.10} + \frac{1}{7.10.13} + \dots$

1

Solution :

$$T_{n} = \frac{1}{(3n-2)(3n+1)(3n+4)} = \frac{1}{6} \left[\frac{1}{(3n-2)(3n+1)} - \frac{1}{(3n+1)(3n+4)} \right]$$
$$= \frac{1}{6} \left[\left(\frac{1}{1.4} - \frac{1}{4.7} \right) + \left(\frac{1}{4.7} - \frac{1}{7.10} \right) + \dots + \frac{1}{(3n-2)(3n+1)} - \frac{1}{(3n+1)(3n+4)} \right]$$
$$= \frac{1}{6} \left[\frac{1}{4} - \frac{1}{(3n+1)(3n+4)} \right]$$

Example # 40 : Find the general term and sum of n terms of the series

1 + 5 + 19 + 49 + 101 + 181 + 295 +

Solution :

The sequence of difference between successive term 4, 14, 30, 52, 80 The sequence of the second order difference is 10, 16, 22, 28, clearly it is an A.P> so let nth term $T_n = an^3 + bn^2 + cn + d$ a + b + c + d = 1(i) 8a + 4b + 2c + d = 5(ii) 27a + 9b + 3c + d = 19(iii) 64a + 16b + 4c + d = 49(iv) from (i), (ii), (iii) & (iv) a = 1, b = -1, c = 0, d = 1 \Rightarrow $T_n = n^3 - n^2 + 1$ $s_n = \Sigma(n^3 - n^2 + 1) = \left(\frac{n(n+1)}{2}\right)^2 - \frac{n(n+1)(2n+1)}{6} + n = \frac{n(n^2 - 1)(3n+2)}{12} + n$

Self practice problems :

(25) Sum to n terms the following series

(i)
$$\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2}$$
 +....

(ii) $1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) \dots$

(26) If
$$\sum_{r=1}^{n} T_r = (n + 1)(n + 2)(n + 3)$$
 then find $\sum_{r=1}^{n} \frac{1}{T_r}$

Ans. (25) (i)
$$\frac{2n+n^2}{(n+1)^2}$$
 (ii) $\frac{n(n+1)(n+2)}{6}$ (iii) $n(n+1)^2$ (26) $\frac{n}{6(n+2)}$