Class-XI Chemistry

THE P-BLOCK ELEMENTS CLASSIFICATION OF ORGANIC COMPOUNDS

Classification Of Organic Compounds

Aliphatic or Open chain compounds

Those compounds in which first & last carbon are not connected with each other.

Branched or unbranched chains are possible in these compounds.

For example:

$$CH_3-CH_2-CH-CH_3\,,\,CH_3-CH_2-CH-CH_3\,\,CH_3-C-CH_3\\ |\\ CH_3-CH_3-CH_3\\ |\\ CH_3-CH_3\\ |\\ CH_3-CH_3$$

There are two varieties in the compounds: -

Saturated Hydrocarbons

(a) In such type, adjacent carbon is attached with single bonds.

Example: CH₃- CH₂- CH₃

- (b) General formula of these compounds is C_nH_{2n+2}
- (c) These are also called as paraffins (Parum + Affine i.e., little reactivity) because these are less reactive due to absence of π -bonds.

Unsaturated Hydrocarbons

(a) There will be a double bond or a triple bond between any two carbon atoms,

$$CH_2 = CH - CH_3$$
 Propene

$$CH \equiv C - CH_3$$
 Propyne

- (b) General formula is C_nH_{2n} or C_nH_{2n-2}
- (c) These are also called as olefins because they react with halogens to form oily substances olefins (Oleum + fines i.e., Oil forming).
- (d) Due to presence of π bonds these are more reactive.

Closed chain compounds

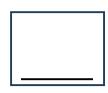
In these compounds first & last carbon are attached with each other.

Example:

Homocyclic compounds

These are the compounds in which the complete ring is formed by carbon atoms only. These are also of two types

(A) Alicyclic compounds: These are the compounds having the properties like aliphatic compounds.


These may be saturated or unsaturated like aliphatic compounds.

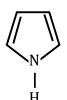
cyclopropane

cyclobutene

- **(B) Aromatic compounds:** Conditions for a compound to be aromatic:
 - (i) Compound should be cyclic.
 - (ii) Compound should be planar. (All carbon in ring should be sp^2 hybridized)
 - (iii) It allows Huckers' Rule: (4n+2) π electrons. (Odd number of π electron pairs)

n = 0	2π electrons	or 1 pair
n = 1	6π electrons	or 3 pairs
n = 2	10π electrons	or 5 pairs
n = 3	14 π electrons	or 7 pairs

Heterocyclic Compounds


These are cyclic compounds having ring and rings buildup of more than one kind of atoms.

Furam

Thiophene

Pyrrole

Normal Groups

- (a) It is represented by 'n':
- **(b)** Straight chain of carbon atoms is known as normal group.
- (c) Free bond will come either on Ist carbon atom or on last carbon atom.

n- propyl

n - butyl

Iso group

(a) It is represented by following structure

(b) When methyl groups are attached to the second last carbon atom, group is named as iso.

$$\begin{array}{cccc} CH_3-CH-CH_3-CH-CH_2-CH_3-CH-CH_2-CH_2-\\ & & & & & & \\ CH_3 & & & & & \\ Iso \ Propyl & Iso \ butyl & Isopentyl \end{array}$$

Neo group

(a) When two methyl group are attached to second last carbon atom group is named neo group.

(b) It is represented by following structure:

for example

$$\begin{array}{c} CH_3 \\ \mid \\ CH_3 - C - CH_2 - Neo \ pentyl \\ \mid \\ CH_3 \end{array}$$

Secondary group

(a) When two alkyl groups attached to the same carbon atom, group is named as secondary.

Ex.

$$\begin{array}{ccc} CH_3-CH_2-CH- & CH_3-CH_2-CH_2-CH- \\ | & | & | \\ CH_3 & CH_3 \end{array}$$

Secondary butyl Active Secondary pentyl

(b) It is represented by following structure.

$$CH_3$$
 – CH_2 – CH – CH_3

Tertiary group

(a) When three alkyl groups (similar or dissimilar) are attached to the same carbon atom, group is name as tertiary.

$$\begin{array}{cccc} CH_3 & CH_3 \\ I & I \\ CH_3 - C - & CH_3 - CH_2 - C - \\ I & CH_3 \end{array}$$

$$\begin{array}{cccc} CH_3 & CH_3 \\ CH_3 - CH_2 - C - \\ I & CH_3 \end{array}$$

$$\begin{array}{cccc} CH_3 & CH_3 - CH_2 - C - \\ I & CH_3 - CH_3$$

Class-XI

Chemistry

(b) It is represented by following structure:

Groups

When a hydrogen is removed from saturated hydrocarbon then alkyl group is formed. It is represented by R & its general formula is C_nH_{2n+1} . A bond is vacant on alkyl group, on which any functional group may come.

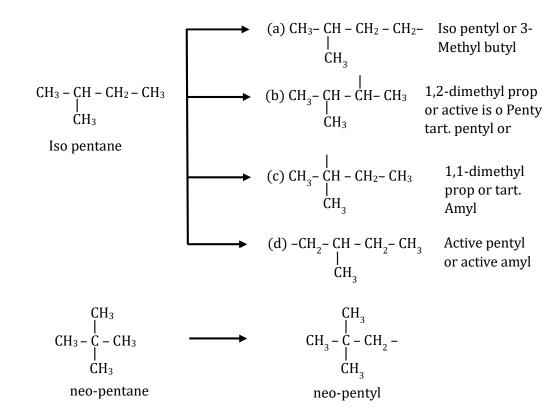
Alkyl groups

Alkane
$$\stackrel{\text{-H}}{\longrightarrow}$$
 Alkyl (monovalent radical) $\stackrel{\text{-H}}{\longrightarrow}$ Bivalent radical $\stackrel{\text{-H}}{\longrightarrow}$ Trivalent radical $CH_4 \rightarrow -CH_3$ Methyl $C_2H_6 \rightarrow -C_2H_5$ Ethyl

(i)
$$CH_3 - CH_2 - CH_2 - n$$
-Propyl

(i)
$$CH_3 - CH_2 - CH_2 - CH_2 - n$$
-butyl

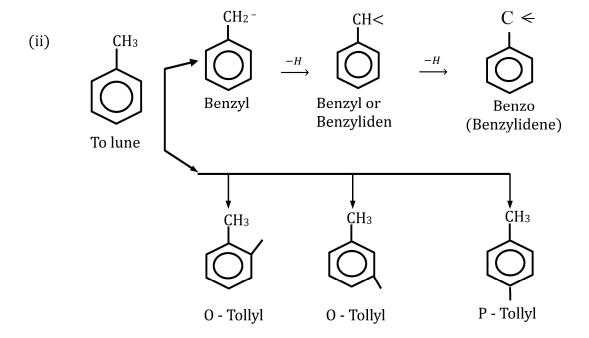
(ii)
$$CH_3$$
 – CH_2 – CH – CH_3 Sec-butyl

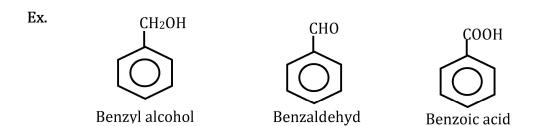

$$CH_3 - CH - CH_3 \\ | \\ CH_3$$
 Isobutane

(ii)
$$CH_3$$
 — C — CH_3 —

n – Pentane (b)
$$CH_3$$
 – CH_2 – CH_2 – CH_3 – Active sec. pentyl

(a) CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - n-pentyl


Class-XI Chemistry



Aryl Radical

(i)
$$\begin{array}{cccc} & & & & & & \\ & & -C_6H_5 & & & & \\ & & Phene \xrightarrow{-H} & phenyl & \xrightarrow{-H} & Phenylene \end{array}$$

Class-XI Chemistry

