HYDROCARBONS

INTRODUCTION

INTRODUCTION

Introduction of Organometallic compounds

Organometallic compounds are the organic compounds in which a metal atom is directly attached to carbon atom through covalent bond or ionic bond. **For example**

$$C - M$$
 or $\begin{array}{c} \Theta \oplus \\ C M \end{array}$
R - MgX, R₂CuLi, R₂Zm

e.g.

(Where C is a carbon atom of an organic molecule and M is a metal atom) If the metal atom is attached to oxygen, nitrogen. sulphur, etc., then such an organic compound is not regarded as an organometallic compound. The following structural formula do not belong to the family of organometallic compounds.

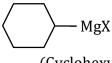
RONa (Sodium alkoxide). CH₃COONa (Sodium acetate), CH₃COOAg (Silver acetate), RSK (Potassium mercaptide) RNHK (N-Alkyl potassamide), (CH₃COO)₄Pb (Lead tetraacetate), etc.

(I) Grignard Reagent

1. Saturated Aliphatic Grignard's reagent

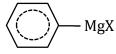
R – MgX (Alkyl magnesium halide) CH₃ – MgI (Methyl magnesium iodide)

2. Unsaturated Aliphatic Grignard's reagent


(i) Alkenyl Grignard's reagent

 $CH_2 = CH - CH_2 - MgX$ (Allyl magnesium halide)

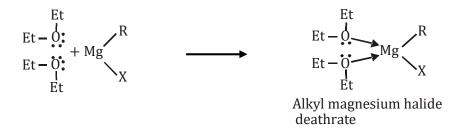
(ii) Alkynyl Grignard's reagent


 $CH = CH - CH_2 - MgX$ (Propargyl magnesium halide)

3. Alicyclic Grignard's reagent

(Cyclohexyl magnesium halide)

4. Aromatic Grignard's reagent


(Phenyl magnesium halide) C₆H₅CH₂MgCl (Benzyl magnesium halide)

Chemistry

Preparation

$$RX + Mg \qquad \frac{Dry \text{ and pure}}{Ether} \rightarrow \qquad RMgX$$

Ether is used as a solvent because it is a Lewis base that donates its lone pair of electrons to electron deficient magnesium atom, therefore providing stability to the Grignard's reagent by completing the octet on magnesium atom.

Process

To an ethereal solution of alkyl halide Mg metal is added at very low temp. $(0.5^{\circ}C)$. A vigorous reaction takes place, and a solution of G.R. is obtained. It cannot be evaporated to obtain a solid state. The reaction will be explosive. It is **stable only in solution state**.

Reactivity order with respect to X (For preparation of RMgX) R – X:

$$R - I > (R - Br) > R - Cl > R - F$$

Most Commonly used (No G.R. form

Iodides forms organometallic compounds at the fastest rate.

Structural stability of G.R.

If the alkyl part has more stable negative charge, then RMgX is more stable. It will be less reactive

Ex.

CH ₃ – CH ₂ – MgX;		$CH_2 = CH - MgX;$	$CH_3C \equiv C - MgX$
Reactivity order	:	1 > 2 > 3	
Stability order	:	1 < 2 < 3	

Reactivity order of Grignard's reagent

On having same hydrocarbon radical, the order of reactivity of Grignard's reagents will be as follows:

RMgI > RMgBr > RMgCl

Chemistry

Reactivity order with respect to active H

Acidic H > - CHO > R-C-R > -C-X > R-C-O-R' > R-X

$$|| \qquad || \qquad || \qquad || \qquad || \qquad 0 \qquad 0$$

Except X (halogen) all other functional groups must be absent in the alkyl group otherwise. G.R. will be destroyed by internal reactions.

[- NO2, - CN must also be absent]

(II) **REDUCTION**

(a) CATALYTIC HYDROGENATION

$$C = C + H_2 \xrightarrow{Catalyst} | C - C - H_H + H_H +$$

Hydrogenation of an alkene is an **exothermic reaction** ($\Delta H^o \cong -120 \text{ KJ mol}^{-1}$)

$$R - CH = CH - R + H_2 \xrightarrow{N\iota} R - CH_2 - CH_2 - R + heat$$

(b) PARTIAL REDUCTION

Lindlar's catalyst

It is a poisoned palladium catalyst (composed of powdered barium sulphate coated with palladium) poisoned with quinoline or sulphur. Nickel boride Ni2B (P-2 catalyst) (made from sodium acetate and sodium borohydride) is an excellent alternative catalyst for the conversion of alkyne into alkene. (Syn addition) The partial reduction of alkyne to alkene is heterogeneous hydrogenation with Landlar's catalyst.

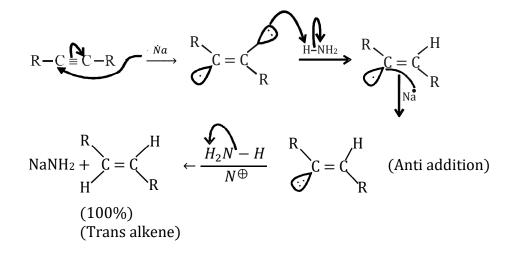
$$CH_3 - CH_2 - C \equiv C - CH_3 \xrightarrow{H_2 \text{Lindlar's catalyat}}_{OrNi_2B} \rightarrow \underbrace{\begin{array}{c} C_2H_5 \\ H \end{array}}_{H} C = C \underbrace{\begin{array}{c} CH_3 \\ H \end{array}}_{H} (Syn \text{ addition})$$

Acid chloride reduced to aldehyde by using Pd/BaSO₄ catalyst is called **Rosamund Reduction**.

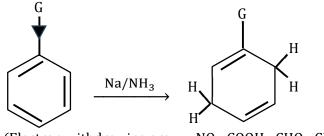
(i)
$$\begin{array}{c} 0 \\ \parallel \\ CH_3 - C - Cl \end{array} \xrightarrow{H_2/Pd - BaSO_4} CH_3 - CHO \end{array}$$

(ii)
$$0_2N - CH = CH - CH_2 - CH_3 \xrightarrow{H_2/Pd/Pt} H_2N - CH_2 - CH_2 - CH_2 - CH_3$$

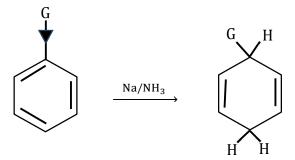
Chemistry

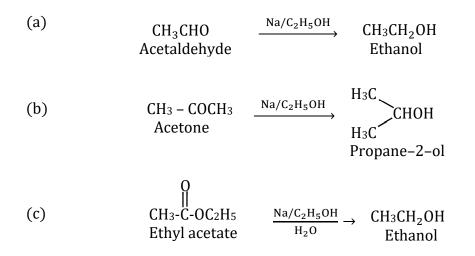

Reduction by Dissolving Metals

The general mechanism of reduction by dissolving metals is based on the fact that the metal acts as a source of electrons first an electron adds to the substrate causing fission of a single bond into a free radical and an anion or it can add to a double bond forming a resonance-stabilized radical ion.


$$A - B \xrightarrow{\overline{e}} A + \overset{\Theta}{B}: or \overset{\Theta}{A}: +B$$

(c) REDUCTION BY NA OR LI/NH₃ (BIRCH REDUCTION) Mechanism


Reagents Na (or Li, K) + liq NH₃ \rightarrow Na⁺ e- (solvated electron)


Typical example of reduction for aromatic system: (Electron releasing group – R, – OR, – NH₂)

(Electron withdrawing grow – NO₂, COOH, -CHO, -CN)

(d) REDUCTION BY NA/C₂H₅OH [BOUVEALT-BLANC REDUCTION]

(e) REDUCTION BY METAL HYDRIDES AND ALKOXIDES LiAlH4(LAH) Lithium aluminum hydride (strong reducing agent): NaBH4 Sodium borohydride (Mild reducing agent): Mechanism

 $\begin{array}{c} \stackrel{\Theta}{\underset{R}{\rightarrow}} & \stackrel{\Theta}{\underset{R}{\rightarrow} & \stackrel{\Theta}{\underset{R}{\rightarrow}} & \stackrel{\Theta}{\underset{R}{\rightarrow}} & \stackrel{\Theta}{\underset{R}{\rightarrow}} & \stackrel{\Theta}{\underset{R}{\rightarrow} & \stackrel{\Theta}{\underset{R}{\rightarrow}} & \stackrel{\Theta}{\underset{R}{\rightarrow} & \stackrel{\Theta}$

(f) DIBAL-H (DIISOLBUTYL ALUMINIUM HYDRIDE) (ALANE)

Most important Alane is Di isobutyl aluminum hydride. It runs parallel to LAH (Lithium aluminium hydride) as a reducing agent but it is more selective.

Chemistry

Class-XI

⊳

 \triangleright

 \triangleright

Ph-CH=CH-COOC₂H₅
$$\xrightarrow{\text{LiAlH}_4-\text{THE}}_{\text{H}_2\text{O}} \rightarrow \text{Ph-CH}_2-\text{CH}_2-\text{CH}_2\text{OH}+\text{C}_2\text{H}_5\text{OH}$$

DIBAL-H
Ph-CH=CH-CH₂OH

By DIBAL at ordinary temperature esters are reduced to alcohols but at low temperature esters are reduced to aldehyde.

$$C_{6}H_{5} - C - OCH_{3} \xrightarrow{DIBAL}{toluene \ 25^{\circ}} \rightarrow C_{6}H_{5}CH_{2}OH$$

$$DIBAL \qquad toluene - 78^{3}C$$

$$C_{6}H_{5}CHO$$

LAH reduce RCN to amine but DIBAL is found to be reduce it to aldehyde.

$$CH_{3}-C = N \xrightarrow{\text{LiA1H}_{4}-\text{The}} CH_{3}-CH_{2} - NH_{2}$$

$$\downarrow DIBAL$$

$$\downarrow 25^{\circ}C$$

$$CH_{3}-CHO$$

(g) MPV REDUCTION (BY ISOPROPYL ALCOHOL AND ALUMINIUM ISOPROPOXIDE)

$$\begin{array}{c} R - C - R' + CH_3 - CH - CH_3 \stackrel{Al(OCMe_2)_3}{\rightleftharpoons} R - CH - R' + CH_3 - C - CH_3 \\ \downarrow \\ 0 & OH \\ \end{array}$$

Stephen's Reduction

When reduction of compounds is carried out with acidified stannous chloride $(SnCl_2/HCl)$ at room temperature, imine hydrochloride is obtained which on subsequent hydrolysis with boiling water gives aldehyde. This specific type of reduction of nitrile is called Stephen's reduction.

$$R - C \equiv N - (i) SnCl_2/HCl (ii)H_2O - (i)$$

Clemmensen's Reduction

Used to get alkane from carbonyl compounds:

$$\sum C = 0 \xrightarrow{Zn/HgHCl} \sum CH_2$$

Clemmensen reduction is not used for compounds which have **acid sensitive** group.

(h) WOLFF-KISHNER REDUCTION (NH₂NH₂/KOH)

Used to get alkane from carbonyl compounds Wolff-kishner reduction is not used for compounds which have **base sensitive** groups.

By Red P & HI

All the functional groups reduced into corresponding hydrocarbon

(a) $R - \underset{\parallel}{C} - OH \xrightarrow{\text{Re dP+HI}} R - CH_3$

(b)
$$R - \underset{\parallel}{C} - Cl \xrightarrow{\text{Re dP+HI}} R - CH_3$$

(c)
$$R - \underset{\bigcup}{C} - OEt \xrightarrow{\text{Re dP+HI}} R - CH_3$$

(d)
$$R - \underset{\parallel}{C} - R \xrightarrow{\text{Re dP} + \text{HI}} R - CH_2 - R$$

(e)
$$CH_3 - C_{H_3} - OH \xrightarrow{\text{Re dP+HI}} CH_3 CH_3$$

(f)
$$CH_3 - CH_3 - CH_3 \xrightarrow{Re \, dP + HI} CH_3 CH_2 CH_3$$

Various functional groups and their products by the use of different reducing agents

S. No.	Group	Product	H ₂ +	LiAlH4 in	NaBH4	LiAlH (OBu ^t)3
			Catalyst	ether	in EtOH	in THF
1	– СНО	– СН2ОН	+	+	+	+
2)_C=0	Снон	+	+	+	+
3	– СО ₂ Н	– CH2OH	-	+	-	-
4	– COOR'	– СН2ОН	-	+	-	-
5	– CHNH ₂	– CH ₂ NH ₂	-	+	-	-
6	– COCl	RCH ₂ OH	+	+	+	+
7	– epoxide	alcohol	+	+	-	_

Chemistry

8	– CN	- CH ₂ NH ₂	+	+	-	-
9	RNO ₂	RNH ₂	+	+	-	-
10	C = C)c = c <	+	-	-	-

(*) double bond can be reduced by $LiAlH_4/THF$ only in cinnamic system.

Ex. $Ph - CH = CH - CHO PH - CH_2 - CH_2 - CH_2OH$