APPLICATION OF INTEGRALS

INTRODUCTION, AREA UNDER SIMPLE CURVES

Area under the curve :

(i) Curve-tracing :

To approximate the shape of a curve, the following expressions are recommended:

(a) Symmetry:

• Symmetry about x-axis :

If all the exponents of 'y' in the equation are even, then the curve (graph) exhibits symmetry about the x-axis.

E.g.: $y^2 = 4 a x$.

• Symmetry about y-axis :

If all the exponents of 'x' in the equation are even, then the curve (graph) displays symmetry about the y-axis.

E.g.: $x^2 = 4 a y$.

• Symmetry about both axis :

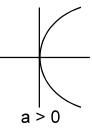
If all the exponents of both 'x' and 'y' in the equation are even, then the curve (graph) exhibits symmetry about both the x-axis and y-axis.

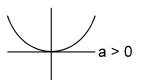
E.g.: $x^2 + y^2 = a^2$.

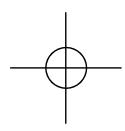
• Symmetry about the line y = x:

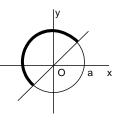
If the equation of the curve remains unaltered upon swapping 'x' and 'y', then the curve (graph) demonstrates symmetry about the line y = x.

E.g.: $x^2 + y^2 = a^2$









Symmetry in opposite quadrants :

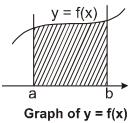
If the equation of the curve (graph) remains unchanged when 'x' and 'y' are substituted with '-x' and '-y' respectively, then symmetry exists across opposite quadrants.

E.g.: $xy = c^2$

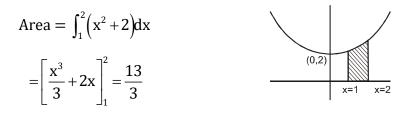
- (b) Determine the points of intersection between the curve and the x-axis as well as the y-axis.
- (c) Calculate $\frac{dy}{dx}$ and set it equal to zero to identify the locations on the curve where horizontal tangents exist.
- (d) Analyze the intervals where f(x) experiences growth or decline.
- (e) Examine what happens to 'y' when $x \to \infty$ or $x \to -\infty$
- (ii) Area included between the curve y = f(x), x-axis and the ordinates

x = a, x = b

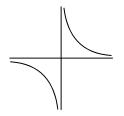
(a) If
$$f(x) \ge 0$$
 for $x \in [a, b]$, then area bounded by curve
 $y = f(x)$, x-axis, $x = a$ and $x = b$ is $\int_a^b f(x) dx$



- **Ex.1** Determine the area bounded by the curve $y = x^2 + 2$, the x-axis, and the vertical lines x = 1 and x = 2.
- **Sol.** Graph of $y = x^2 + 2$



Ex.2 Determine the area enclosed by the curve $y = In x + tan^{-1} x$ and x-axis between ordinates x = 1 and x = 2.



Sol.

 $y = In x + tan^{-1}x$

Domain x > 0,

$$\frac{dy}{dx} = \frac{1}{x} + \frac{1}{1+x^2} > 0$$

y is increasing and x = 1, y = $\frac{\pi}{4}$

y is positive in [1, 2]

Required area =
$$\int_{1}^{2} (\ell nx + \tan^{-1} x) dx$$

= $\left[x \ell nx - x + x \tan^{-1} x - \frac{1}{2} \ell n (1 + x^{2}) \right]_{1}^{2}$
= 2 In 2 - 2 + 2 $\tan^{-1} 2 - \frac{1}{2}$ In 5 - 0 + 1 - $\tan^{-1} 1 + \frac{1}{2}$ In 2
= $\frac{5}{2}$ In 2 - $\frac{1}{2}$ In 5 + 2 $\tan^{-1} 2 - \frac{\pi}{4} - 1$

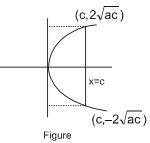
Note: If a function is confirmed to have positive values, a graph may not be required.

- **Ex.3** The value of k is determined by the fact that the area enclosed by any double ordinate on a parabola is k times the area of the rectangle formed by the double ordinate and its distance from the vertex.
- **Sol.** Consider $y^2 = 4ax$, a > 0 and x = c

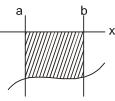
Area by double ordinate = $2\int_{0}^{c} 2\sqrt{a}\sqrt{x}dx$ = $\frac{8}{3}\sqrt{ac^{\frac{3}{2}}}$

Area by double ordinate = k (Area of rectangle)

$$\frac{8}{3}\sqrt{ac^{\frac{3}{2}}} = k4\sqrt{ac^{\frac{3}{2}}}$$
$$k = \frac{2}{3}$$



(b) If
$$f(x) < 0$$
 for $x \in [a, b]$, then area bounded by curve
 $y = f(x)$, x-axis, $x = a$ and $x = b$ is $-\int_{a}^{b} f(x) dx$



Graph of y = f(x)

Ex.4 What is the area bounded by $y = \log_1 x$ and x-axis between x = 1 and x = 2

Sol. A rough graph of $y = \log_{\frac{1}{2}} x$ is as follows

Area =
$$-\int_{1}^{2} \log_{\frac{1}{2}} x dx$$

= $-\int_{1}^{2} \log_{e} x \cdot \log_{\frac{1}{2}} e dx$
= $-\log_{\frac{1}{2}} e \cdot [x \log_{e} x - x]_{1}^{2}$
 $-\log_{\frac{1}{2}} e \cdot (2 \log_{e} 2 - 2 - 0 + 1)$
 $-\log_{\frac{1}{2}} e \cdot (2 \log_{e} 2 - 1)$

Note: If y = f(x) does not change sign in [a, b], then area bounded by y = f(x), x-axis between ordinates x = a, x = b is $\left| \int_{a}^{b} f(x) dx \right|$

(c) If $f(x) \ge 0$ for $x \in [a, c]$ and $f(x) \le 0$ for $x \in [c, b]$ (a < c < b) then area bounded by curve y = f(x) and x-axis between x = a and x = b is

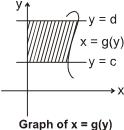
$$\int_{a}^{c} f(x) dx - \int_{c}^{b} f(x) dx$$

Ex.5 Find the area bounded by $y = x^3$ and x- axis between ordinates x = -1 and x = 1

Sol. Required area =
$$\int_{-1}^{1} -x^{3} dx + \int_{0}^{1} x^{3} dx$$
$$= \left[-\frac{x^{4}}{4} \right]_{-1}^{0} + \left[\frac{x^{3}}{4} \right]_{0}^{1}$$
$$= 0 - \left(-\frac{1}{4} \right) + \frac{1}{4} - 0$$
$$= \frac{1}{2}$$

Note: Most general formula for area bounded by curve y = f(x)and x- axis between ordinates x = a and x = b is

$$\int_{a}^{b} \left| f(x) \right| dx$$



Sol.

Ex.6 Find the area enclosed between the curve $y = sin^{-1}x$ and the y-axis in the interval

Note: The area in the above example can also be calculated through integration with respect to x.

= -(0 - 1) = 1

Area = (area of rectangle formed by x = 0, y = 0, x = 1, $y = \frac{\pi}{2}$) – (area bounded by

$$y = \sin^{-1}x$$
, x-axis between $x = 0$ and $x = 1$)

$$= \frac{\pi}{2} \times 1 - \int_{0}^{1} \sin^{-1} x dx$$
$$= \frac{\pi}{2} - \left(x \sin^{-1} x + \sqrt{1 - x^{2}}\right)_{0}^{1}$$
$$= \frac{\pi}{2} - \left(\frac{\pi}{2} + 0 - 0 - 1\right) = 1$$

Ex.7 Determine the area enclosed by the parabola $x^2 = y$, the y-axis, and the line y = 1.

Sol. Graph of $y = x^2$ Area OEBO = Area OAEO

$$= \int_{0}^{1} |x| dy = \int_{0}^{1} \sqrt{y} dy$$
$$= \frac{2}{3}$$

Ex.8 Find the area bounded by the parabola $x^2 = y$ and line y = 1.

Sol. Graph of $y = x^2$

Required area is area OABO = 2 area (OAEO)

$$=2\int_{0}^{1} |\mathbf{x}| d\mathbf{y} = 2\int_{0}^{1} \sqrt{\mathbf{y}} d\mathbf{y}$$
$$=\frac{4}{3}$$

Note: General formula for the area enclosed by the curve x = g(y) and y-axis between abscissa

$$y = c$$
 and $y = d$ is $\int_{y=c}^{d} |g(y)| dy$