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INTEGRALS 

FUNDAMENTAL THEOREM OF CALCULUS 

 

Definition Of The Definite Integral 

In this segment, we will provide a formal definition of the definite integral and discuss 

various properties associated with it. To commence, let's delve into the definition of 

a definite integral. 

Definite Integral 

For a function f(x) that exhibits continuity over the interval [a, b], we partition the 

interval into n subintervals of uniform width, Δx, and select a point from each interval, 

The definite integral of f(x) from a to b is then defined as: 

 
n

b

ia n
i 1

f(x)dx lim f x Δx




   

The definite integral is precisely defined as the limit and summation method explored 

in the previous section to determine the net area between a function and the x-axis. 

It's worth noting that the notation for the definite integral closely resembles that of 

an indefinite integral, with the reason for this similarity becoming clear over time. 

In addition, there is some terminology to clarify here. The value "a" positioned at the 

bottom of the integral sign is termed the lower limit of the integral, while the value 

"b" at the top is referred to as the upper limit of the integral. Despite being presented 

as an interval, it's important to note that the lower limit does not necessarily have to 

be smaller than the upper limit. Together, a and b are commonly referred to as the 

interval of integration. 

Let’s work a quick example  

This illustration will leverage various properties and information covered in the 

concise review of summation notation in the Extras chapter. 

 

Ex.1  Apply the definition of the definite integral to calculate the following. 

2
2

0
x 1dx  
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Sol. Initially, we cannot employ the definition unless we ascertain the points within each 

interval that we will use for. To simplify matters, we will utilize the right endpoints of 

each interval. 

From the previous section we know that for a general n the width of each subinterval is, 

2 0 2
Δx

n n


   

The subintervals are then, 

2 2 4 4 6 2(i 1) 2i 2(n 1)
0, , , , , , , , , , , 2

n n n n n n n n

          
          

         
 

Observing that the right endpoint of the ith subinterval is evident, 

i

2i
x

n

   

The sum in the definition of the definite integral is subsequently, 

 
n

i

i 1

f x Δx




n

i 1

2i 2
f

n n

  
   

  
  

2n

i 1

2i 2
1

n n

    
          
  

2n

3
i 1

8i 2

n n

 
  

 
  

Now, we need to take a limit of this. This implies that we have to "evaluate" this 

summation, meaning we must utilize the formulas provided in the summation notation 

review to eliminate the actual summation and derive a formula for a general n. 

To accomplish this, it's essential to recognize that n is treated as a constant in terms 

of the summation notation. As we cycle through the integers from 1 to n in the 

summation, only i changes, and anything that isn't an i will be a constant that can be 

factored out of the summation. Notably, any n within the summation can be factored 

out if necessary. 

Here is the "evaluation" of the summation. 

 
n

i

i 1

f x Δx




2n n

3
i 1 i 1

8i 2

n n 

    
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n n
2

3
i 1 i 1

8 1
i 2

n n 

    

3

8 n(n 1)(2n 1) 1
(2n)

n 6 n

  
  

 
 

2

4(n 1)(2n 1)
2

3n

 
   

2

2

14n 12n 4

3n

 
  

We can now compute the definite integral. 

2
2

0
x 1dx  

n

i
n

i 1

lim f x Δx




   

2

2n

14n 12n 4 14
lim

3n 3

 
   

We've presented several methods to handle the limit in this problem, and we'll leave it to 

you to verify the results. While the process may seem involved for a relatively simple 

function, there's a more straightforward method for evaluation, which we'll explore later. 

The main goal of this section is to establish the fundamental properties and facts about the 

definite integral. Practical computation methods will be discussed in the next section. Now, 

let's start by exploring some properties of the definite integral. 

 

Properties 

1. 
b a

a b
f (x)dx f (x)dx.     

The limits on any definite integral can be interchanged by simply attaching a minus 

sign to the integral during the exchange. 

2. 
a

a
f (x)dx 0.  

When the upper and lower limits are the same, no computation is required, and the 

integral equals zero. 

3. 
b b

a a
cf (x)dx c f (x)dx,   



CLASS 12  MATHS 

4 
 

Where c is any constant. Much like in limits, derivatives, and indefinite integrals, we 

can factor out a constant. 

4. 
b b b

a a a
f (x) g(x)dx f (x)dx g(x)dx.      

Decomposition of definite integrals is possible across a sum or difference.. 

5. 
b c b

a a c
f (x)dx f (x)dx f (x)     

dx, where c is any constant. This property possesses greater significance than we 

might initially realize. Its primary application lies in assisting us in integrating a 

function over adjacent intervals, specifically [a, c] and [c, b]. It's important to note that 

c doesn't necessarily have to be situated between a and b. 

6. 
b b

a a
f (x)dx f (t)dt   

The core idea behind this property is to understand that, as long as the function and 

limits remain consistent, the choice of the variable of integration in the definite 

integral will not affect the result. 

For the proof of properties 1–4, please consult the "Proof of Various Integral 

Properties" section in the Extras chapter. Property 5 is challenging to prove and is not 

included there. Property 6, strictly speaking, isn't a complete property. Its inclusion 

is simply to acknowledge that, as long as the function and limits remain constant, the 

variable letter used in the integration doesn't affect the result—the outcome remains 

the same. 

Now, let's go through a couple of examples that involve these properties. 

 

Ex. 2  Use the results from the first example to evaluate each of the following. 

 1. 
0

2

2
x 1dx  2. 

2
2

0
10x 10dx   3. 

2
2

0
t 1dt  

Sol. (a) In this scenario, the sole distinction lies in the interchange of the limits. 

So,  using the first property gives, 

0
2

2
x 1dx  

2
2

0

14
x 1dx

3
      



CLASS 12  MATHS 

5 
 

(b) In this part, note that we can factor out a factor of 10 from both terms and then from 

the integral using the third property. 

2
2

0
10x 10dx   

2
2

0
10 x 1 dx   

2
2

0
10 x 1dx   

14
10

3

 
  

 
 

140

3
  

(c)  In this case, the only difference is the selection of the variable, making it possible to 

address this using property 6. 

2 2
2 2

0 0

14
t 1dt x 1dx

3
      

Ex. 3  Compute the value of the given definite integral.
3

130

2130

x xsin(x) cos(x)
dx

x 1

 

   

Sol. Once we realize that the limits are the same, there isn't much to handle with this 

integral. Applying the second property, it transforms into: 

3
130

2130

x xsin(x) cos(x)
dx 0

x 1

 


  

Ex.4 Given that 
10 6

6 10
  f (x)dx 23 and  g(x)dx 9



     determine the value of 

6

10
2f (x) 10g(x)dx


  

Sol. At the outset, we'll use the fourth property to break down the integral and the third 

property to extract the constants. 

6

10
2f (x) 10g(x)dx


  

6 6

10 10
2f (x)dx 10g(x)dx

 
    

6 6

10 10
2 f (x)dx 10 g(x)dx

 
    

Now, take note that the limits on the first integral are exchanged with those on the 

provided integral. Adjust them using the first property mentioned above (and 

introduce a minus sign, if required). After this adjustment, substitute the known 

values of the integrals. 
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6

10
2f (x) 10g(x)dx


  

10 6

6 10
2 f (x)dx 10 g(x)dx




     

2(23) 10( 9)     

44  

Ex.5 Given that 
10 10 5

12 100 100
f (x)dx 6, f (x)dx 2,  and  f (x)dx 4 

  

      determine the value of 

12

5
  f (x)dx. 
  

Sol. This example predominantly illustrates the application of property 5, with a few 

instances of employing property 1 in the solution. 

To effectively decompose the integral using property 5 and leverage the given 

information, we must identify the appropriate approach. Initially, observe an integral 

with a "-5" in one of the limits. While it's not the lower limit, property 1 can be utilized 

to rectify that eventually. The other limit is 100, which becomes the value of c used in 

property 5. 

12 100 12

5 5 100
f (x)dx f (x)dx f (x)dx

 
     

We can calculate the value of the first integral, but the second one is still not one of 

the known integrals. Nevertheless, we do have a second integral with a limit of 100. 

The other limit for this second integral is -10, and this will be the value of c in the 

application of property 5. 

12 100 10 12

5 5 100 10
f (x)dx f (x)dx f (x)dx f (x)dx



  
       

At this point, all that needs to be done is to apply property 1 to the first and third 

integrals to match the limits with the known integrals. After this adjustment, we can 

substitute the values for the known integrals. 

12

5
f (x)dx

  
5 10 10

100 100 12
f (x)dx f (x)dx f (x)dx

  

       

4 2 6     

12   

Moreover, there are several helpful properties that we can utilize to compare the 

overall magnitude of definite integrals. Here they are. 
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More Properties 

7. 
b

a
cdx c(b a),c is any number   

8. 
b

a
If f(x) 0 for a x b then  f(x)dx 0     

9. 
b b

a a
If f(x) g(x) for a x b then  f(x)dx g(x)dx      

10. 
b

a
If m f(x) M for a x b then m(b a) f(x)dx M(b a)         

11. 
b b

a a
f(x)dx |f(x)|dx   

Interpretations of Definite Integral 

Here, we can provide a couple of brief interpretations of the definite integral. 

Initially, as hinted in the preceding section, one potential interpretation of the definite 

integral is to provide the net area between the graph of f(x) and the x-axis over the 

interval [a, b]. For instance, the net area between the graph of 2 + 1f (x) =x2 +1 and 

the x-axis on [0, 2] is given by: 

2
2

0

14
x 1dx

3
   

If you refer to the previous section, you'll notice that this was precisely the area 

provided for the initial set of problems we examined in this context. 

Another interpretation is occasionally referred to as the Net Change Theorem. This 

interpretation posits that if f(x) represents a quantity (with f ′ (x) denoting the rate 

of change of f(x)), then: 

b

a
f (x)dx f (b) f (a)   

This represents the net change in f(x) over the interval [a, b]. In simpler terms, when 

you compute the definite integral of a rate of change, you obtain the net change in the 

quantity. It's evident that the value of the definite integral, f (b) − f(a), indeed 

provides the net change in f(x). Therefore, there isn't anything to prove with this 

statement; it essentially acknowledges what the definite integral of a rate of change 

reveals. 

As a brief illustration, suppose V(t) represents the volume of water in a tank, then: 
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   
2

1
2 1( )

t

t
V t dt V t V t    

This denotes the net change in volume as we transition from time 1t1 to time 2t2. 

Similarly, if s(t) is the function describing the position of an object at time t, we 

understand that the velocity of the object at any time t is given by  

v(t)=s  (t). Consequently, the displacement of the object from time 1t1 to time 2t2  is: 

   
2

1

t

2 1
t
v(t)dt s t s t   

In this scenario, it's important to highlight that if v(t) is both positive and negative 

(indicating the object moves both to the right and left within the given time frame), 

this will NOT provide the total distance traveled. Instead, it will only give the 

displacement—essentially, the difference between the object's starting and ending 

positions. To calculate the total distance traveled by an object, we would need to 

compute: 

2

1

t

t
| v(t) | dt  

It's crucial to emphasize that the Net Change Theorem is meaningful when we're 

integrating the derivative of a function. 

 

Fundamental Theorem of Calculus, Part I 

As indicated by the title above, this constitutes just the initial segment of the 

Fundamental Theorem of Calculus. We will present the second part in the following 

section, as it forms the basis for effortlessly calculating definite integrals—an aspect 

that will be explored further in the upcoming section. 

The first part of the Fundamental Theorem of Calculus instructs us on differentiating 

specific categories of definite integrals, shedding light on the intimate connection 

between integrals and derivatives. 

 

Fundamental Theorem of Calculus, Part I 

If f(x) exhibits continuity over the interval [a, b], then... 

x

a
g(x) f (t)dt   
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Is continuous over [a, b] and differentiable on the open interval (a, b), and... 

g (x) f (x)  

An alternative notation for the derivative component of this is, 

( ) ( )
x

a

d
f t dt f x

dx
  

Let’s check out a couple of quick examples using this. 

Ex.6 Differentiate each of the following. 

 (a) 
x

2t 2

4
g(x) cos (1 5t)dt


  e   (b) 

2

4
1

2x

t 1
dt

t 1



  

Sol. (a) An alternative notation for the derivative component of this is, 

2x 2g (x) cos (1 5x)  e  

(b) This one requires some adjustments before we can apply the Fundamental 

Theorem of Calculus. The initial observation is that the Fundamental Theorem 

of Calculus mandates the lower limit to be a constant and the upper limit to be 

the variable. Therefore, by employing a property of definite integrals, we can 

interchange the limits of the integral, remembering to include a minus sign 

afterward. This transformation yields: 

2

4
1

2x

d t 1
dt

dx t 1




  

 
 

 


2 4
x

21

d t 1
dt

dx t 1
 







2 4
x

21

d t 1
dt

dx t 1
 

The subsequent observation is that the Fundamental Theorem of Calculus also 

mandates an x in the upper limit of integration, and we currently have x2. To perform 

this derivative, we'll require the following version of the chain rule: 

d d du
(g(u)) = (g(u))  where u = f(x)

dx du dx
 

So,  if we let u= x2 we use the chain rule to get, 

2

4
1

2x

d t 1
dt

dx t 1



  
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2 4
x

21

d t 1
dt

dx t 1


 

  

4
u

2

21

d t 1 du
dt  where u x

du t 1 dx


  

  

4

2

u 1
(2x)

u 1


 


 

   
4

2

u 1
2x

u 1


 


 

The final step is to get everything back in terms of x. 

2

4
1

2x

d t 1
dt

dx t 1



  
 

 

4
2

2
2

x 1
2x

x 1


 


 

       
8

4

x 1
2x

x 1


 


 

Using the chain rule as we did in the last part of this example we can derive some 

general formulas for some more complicated problems. 

First,     
u(x)

a

d
f (t)dt u (x)f (u(x))

dx
  

This is simply the chain rule for these kinds of problems. 

Next, we can get a formula for integrals in which the upper limit is a constant and 

the lower limit is a function of x. All we need to do here is interchange the limits on 

the integral (adding in a minus sign of course) and then use the formula above to 

get, 

b v(x)

v(x) b

d d
f (t)dt f (t)dt v (x)f (v(x))

dx dx
      

Finally, we can also get a version for both limits being functions of x. In this case 

we’ll need to use Property 5 above to break up the integral as follows,  

u(x) a u(x)

v(x) v(x) a
f (t)dt f (t)dt f (t)dt     

We can use pretty much any value of a when we break up the integral. The only 

thing that we need to do is to make sure that f(a) exists. So, assuming that f(a) exists 
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after we break up the integral we can then differentiate and use the two formulas 

above to get,  

u(x)

v(x)

d
f (t)dt

dx 
  

a u(x)

v(x) a

d
f (t)dt f (t)dt

dx
    

v (x)f(v(x)) u (x)f(u(x))   

Ex. 7  Differentiate the following integral.  
3x

2 2

x
t sin 1 t dt  

Sol. This will use the final formula that we derived above. 

 
3x

2 2

x

d
t sin 1 t dt

dx
  

   
1

2 2 2 22
1

x ( x) sin 1 ( x) (3)(3x) sin 1 (3x)
2



      

 

 

  

  

  


