CLASS 12

APPLICATIONS OF DERIVATIVES

INCREASING & DECREASING FUNCTIONS

Monotonicity of a function:
Consider a real-valued function (f) with a domain (D (DR)), and let (S) be a subset
of (D). The function (f) is defined to be monotonically increasing (non-decreasing)
(increasing) in (S) if for every.
X1, X2 € §,x1 < X2
f (x1) <f(x2).
The function fis considered monotonically decreasing (non-increasing) (decreasing)
in S if, for every...
X1,X2 € §, X1 < X2
f(x1) = f(x2)
The function f is termed strictly increasing in S if, for every...
X1, X2 € §,x1 < X2
f(x1) < f(x2).
Likewise, fis described as strictly decreasing in S if, for every...
X1, X2 € §,x1 < X2

f(x1) > f(x2).

If f is strictly increasing, it implies that f is monotonically increasing (non-
decreasing). However, the converse need not be true.

If f is strictly decreasing, it implies that f is monotonically decreasing (non-
increasing). Again, the converse need not be true.

If f(x) is a constant in S, then f is both increasing and decreasing in S.

A function f is termed an increasing function if it is increasing in the domain.
Similarly, if f is decreasing in the domain, we say that f is monotonically

decreasing.
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(v)  fis considered a monotonic function if it is either monotonically increasing or
monotonically decreasing.
(vi) Iffisincreasingin a subset of S and decreasing in another subset of S, then fis

non-monotonic in S.

Application of differentiation for detecting monotonicity:
Let I be an interval (open, closed, or semi-open and semi-closed):
@) If f'(x) > 0 for all xin I, then fis strictly increasing in 1.

(i) Iff(x) <O forallxinl, then fis strictly decreasing in L.

Notes:-
Consider I as an interval or ray, which is a subset of the domain of f. If...
Iff (x) > 0 for all xin I, except for countably many point where f' (x) = 0, them f (x)
is strictly increasing in 1.
If f (x) = 0 at countably many points, it implies that f (x) = 0 does not occur on an
interval that is a subset of L.

Consider another function whose graph is depicted below for x in the interval (a, b).

écdeb

In this case as well, ' (x) > 0 for all x in (a, b). However it's important to observe that

in this scenario f' (x) = 0 is true for all xin (c, d) and (e, b).

Consider the function ' (x) = x - sin (x). Determine the intervals of monotonicity.
f(x) =1-cosx
Now, f'(x)> 0everywhere, exceptatx =0, £ 2n, + 4m etc.

However, all these points are distinct (countable) and do not constitute an interval.
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Therefore, we can infer that f(x) is strictly increasing across the entire real number

line. This can be visually observed in the graph as well.

4n -

27_5// 3n
. fxX)=x=sinx
7,

s
s

n 2n 3n 4n

Determine the minimum value of K for which the function x2 + kx + 1 is an
increasing function in the interval 1 <x < 2.
fx)=x2+kx+1

For f(x) to be increasing, f'(x) > 0

- %(X2+kx+1)>0

2x+ k>0
= k>-2x

For x € (1, 2) the least value of kis -2

Determine the intervals in which f(x) = x3 - 3x + 2 is increasing.
fx)=x3-3x+2
f(x)=3(x2-1)
fx)=3x-1)(x+1)
f(x)>0

+ - +

3x-1)(x+1)=0 -1 1

= X € (-, - 1] U[1, ), thus fis increasing in (- o, -1] and also in [1, )

Determine the intervals of monotonic behavior for the given functions.
() f(x) =x% (x-2)2 (i) f(x) =xInx (iii) f(x) = sinx + cosx; x € [0, 27]
) f(x) =x2 (x - 2)?
f(x)=4x(x-1) (x-2)
Observing the sign change of ' (x)
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Hence increasing in [0, 1] and in [2, «) and decreasing for
X € (-,0] and [1, 2]

f(x) =xInx

f(x)=1+Anx

f(x)>0

Inx>-1

X 2>

increasing for x E ooj and decreasing for x € [O : ﬂ .

f(x) =sinx + cos x
f'(x) = cos x - sin X
For increasing f'(x) >0

COS X > sin X

fis increasing in 0.2 | and s—n,Zn fis decreasing in E,S—n
4 4 4" 4

Notes:-
If a function f (x) demonstrate increasing behavior in the open interval (a, b) and is
continues over the closed interval [a, b] then f (x) is increasing across the entire

interval [a, b]

The function f (x) = [x] is a step function is it strictly increasing for all x in the set of
real numbers?
No, f (x) = [X] is an increasing (monotonically increasing or non - decreasing)

function, but it is not stricly increasing, as evidenced by its graph.

e——o0
e——o0

*——o0
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Ex.6 Iff(x) =sin*x + cos*x + bx + ¢, determine the potential value of b and c such that f
(x) is monotonic for all x in the set of real number.

Sol. f(x) = sin*x + cos*x + bx + ¢

f'(x) = 4 sin3x cos X - 4cos3x sinx + b
= -sin4x + b.
Case (i) : for M.I. f(x)>0 forallx e R
b > sin4x forallx e R

= b>1
Case (ii) : for M.D. f(x) <0 forallx e R
= b < sin4x forallx e R
= b<-1

Hence for f(x) to be monotonicb € (- o, - 1] U [1,0) and c € R.

Determine the potential value of ‘a’ for which f (x) = e% - (a+ 1) ex+ 2xIis
monotonically increasing for all x in the set of real number.

f(x) =e*-(a+1)ex+2x

f(x) =2e*-(a+1)ex+2

2e-(a+1)ex+22>0 forall x e R

2[e*+e—1xj -(a+1)=>0 forall x e R

(a+1)32(ex+e—1xj forall x e R
= a+1<4 (e +lx has minimum value 2)
e
= a<3
Aliter (Using graph)
2ex-(a+1)ex+22>0 forall x e R
Putting ex=t ; te (0,o)
22-(a+1D)t+2>0 forall t e (0, »)
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Case - (i) D<O0
= (@a+1)2-4<0

A

(@+5)(@-3)<0

ae[-53]

Case- (ii): both roots are non-positive

D>0 & -2£<0 & f(0)>0
a

aec(-o-5]U[3x) & aT”<0 & 2>0

ae(-wo,-5]Uf3,©) & a<-1 & aeR
ae (-mw,-5]

Taking union of (i) and (ii),

We get, ae (-mx3]

Monotonicity of function about a point:-
(1) A function f (x) is referred to as a strictly increasing function around a point
(or at a point) a € Drif it is strictly increasing in a open interval containing a

(as depicted in the figure.)
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(i) A function f(x) is termed a strictly decreasing function around the pointx = a
if it exhibits strict decrease within an open interval that includes a (as

illustrated in the figure).

Notes:-

If x = a is a boundary point, employ the appropriate one-sided inequality to examine

the monotonicity of f(x).
f(a)

f(a)

X=a X=a
fisincreasing atx = a fis decreasing at x = a

" .

a a
fis increasing at x = a fis decreasing at x = a

E.g.  Atthe given value x = a, determine whether the depicted functions (as illustrated in

the figure) are increasing, decreasing, or exhibiting neither an increase nor decrease.

X=a
neither increasing Xx=a
nor decreasing at x = a Increasing at x = a
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(iii)

neither increasing X=a
nor decreasing at x = a decreasing at x = a

Test for increasing and decreasing functions about a point :

Consider the differentiability of the function f (x):

®
(i)
(iif)
(@)
(b)
(©)

Iff(a) > 0, then f (x) is increasing at x = a.

Iff(a) <0, then f (x) is decreasing at x = a.

Iff'(a) = 0, analyze the sign of f' (x) in the left and right neighborhoods of a:

If £ (x) is positive in both neighborhoods then f is increasing at x = a.

If £ (x) is negative in both neighborhoods, then f is decreasing at x = a.

If f(x) has opposite signs in these neighborhoods, then fis non - monotonic at

X=a.

Consider the function f (x) = x3 - 3x + 2 investigate the monotonic behavior of the

function at the points x =0, 1, 2.

=
(iii)
=

Notes:-

fx)=x3-3x+2
f(x)=3(x2-1)
f(0)=-3
decreasingatx =0
f(1)=0
f'(x) is positive on left neighborhood and f'(x) is negative in right
neighborhood.
neither increasing nor decreasing at x = 1.
f(2)=9

increasing atx =2

This method is applicable exclusively to functions that exhibit continuity at x = a.
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