THREE DIMENSIONAL GEOMETRY

SHORTEST DISTANCE BETWEEN TWO LINES

SHORTEST DISTANCE BETWEEN TWO LINES:

DEFINITION

- (i) Line of shortest distance: If L₁ and L₂ are two skew lines, there exists a unique line that is perpendicular to both, and it is referred to as the line of shortest distance.
- (ii) Shortest distance: The shortest distance between two lines, L₁ and L₂, is represented by the distance |PQ|, where P and Q are points at which the line of shortest distance intersects L₁ and L₂, respectively.

Note: If two lines in space intersect at a point, then the minimum distance between them is zero.

(a) To find the shortest distance between two skew line $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \lambda \vec{b}_2$. Let two skew line L₁ and L₂ be the $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$... (1) And $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$... (2) Take any point S (\vec{a}_1) on L₁ and T (\vec{a}_2) on L₂. Let \vec{PQ} be the shortest distance vector between them. By def. \vec{PQ} is perp. To (1) and (2) \vec{PQ} is prep. To both \vec{b}_1 and \vec{b}_2 . \vec{PQ} is parallel to $\vec{b}_1 \times \vec{b}_2$. The unit vector \hat{n} along PQ is given by $\hat{n} = \frac{\vec{b}_1 \times \vec{b}_2}{|\vec{b}_1 \times \vec{b}_2|}$ Let $\overrightarrow{PQ} = d \hat{n}$, where d is the magnitude of the vector representing the shortest distance.

Clearly PQ is a projection of \overrightarrow{ST} on \overrightarrow{PQ}

Now if ' θ ' be the angel between \overrightarrow{PQ} and \overrightarrow{ST} .

Then

But

$$\cos \theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{ST}}{|\overrightarrow{PQ}|| \overrightarrow{ST}|} = \frac{d\hat{n} \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{d |\overrightarrow{b_1} \times \overrightarrow{b_2}|}$$
Hence,

$$d = PQ = ST \cos \theta = \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|}$$

Since d is always considered positive.

$$\mathbf{d} = \frac{\left| \left(\overrightarrow{\mathbf{b}_{1}} \times \overrightarrow{\mathbf{b}_{2}} \right) \times \left(\overrightarrow{\mathbf{a}_{2}} - \overrightarrow{\mathbf{a}_{1}} \right) \right|}{\left| \overrightarrow{\mathbf{b}_{1}} \times \overrightarrow{\mathbf{b}_{2}} \right|}$$

- If two line intersect then d = 0Cor. $\left(\overrightarrow{\mathbf{b}_{1}}\times\overrightarrow{\mathbf{b}_{2}}\right)\cdot\left(\overrightarrow{\mathbf{a}_{2}}-\overrightarrow{\mathbf{a}_{1}}\right)=0$ i.e.
- To find the shortest distance between two parallel lines: (b) $\vec{r} = \vec{a_1} + \lambda \vec{b}$ and $\vec{r} = \vec{a_2} + \mu \vec{b}$.

Let two parallel line L_1 and L_2 be:

$$\vec{r} = \vec{a_1} + \lambda \vec{b}$$
 ... (1)
 $\vec{r} = \vec{a_2} + \lambda \vec{b}$... (2)

These are clearly coplanar.

It is evident that either L₁ and L₂ is parallel to vector \vec{b} , and both lines pass through the points S $(\overrightarrow{a_1})$ and T $(\overrightarrow{a_2})$.

MATHS

Let \overrightarrow{PQ} be the shortest distance vector between them.

$$d = PQ = ST \cos (90^{\circ} - \theta) = ST \sin \theta$$
$$= (ST) \frac{|\vec{b} \times \vec{ST}|}{|\vec{b}|(ST)} = \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{|\vec{b}|}.$$

Since d is always to be taken as a positive.

(C) To find the shortest distance between two straight lines whose equation are:

Let PQ be the S.D.

Let <l, m, n,> be its direction cosines.

Then $ll_1 + mm_1 + nn_1 = 0$... (1) And

 $ll_2 + mm_2 + nn_2 = 0$... (2)

Solving,

$$\frac{1}{m_1n_2 - m_2n_1} = \frac{m}{n_1l_2 - n_2l_1} = \frac{n}{l_1m_2 - l_2m_1}.$$

Direction ratios of PQ are:

$$\langle \mathbf{m}_{1}\mathbf{n}_{2} - \mathbf{m}_{2}\mathbf{n}_{1}, \mathbf{n}_{1}\mathbf{l}_{2} - \mathbf{n}_{2}\mathbf{l}_{1}, \mathbf{l}_{1}\mathbf{m}_{2} - \mathbf{l}_{2}\mathbf{m}_{1} \rangle$$

Direction cosines of PQ are :

$$<\frac{m_{1}n_{2}-m_{2}n_{1}}{\sqrt{\sum(m_{1}n_{2}-m_{2}n_{1})^{2}}},\frac{n_{1}l_{2}-n_{2}l_{1}}{\sqrt{\sum(m_{1}n_{2}-m_{2}n_{1})^{2}}},\frac{l_{1}m_{2}-l_{2}m_{1}}{\sqrt{\sum(m_{1}n_{2}-m_{2}n_{1})^{2}}}>.$$

Length of the S.D. = |PQ| = Projection of |AB| on PQ

MATHS

$$\frac{(x_2 - x_1)(m_1n_2 - m_2n_1) + (y_2 - y_1)(n_1l_2 - n_2l_1) + (z_2 - z_1)(l_1m_2 - l_2m_1)}{\sqrt{\Sigma(m_1n_2 - m_2n_1)^2}}.$$

Cor. If two line intersect then:

$$(x_2 - x_1)(m_1n_2 - m_2n_1) + (y_2 - y_1)(n_1l_2 - n_2l_1) + (z_2 - z_1)(l_1m_2 - l_2m_1) = 0 \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$$

CO-PLANARITY OF TWO LINES:

Consider the two lines:

$$\vec{r} = \vec{a_1} + \lambda \vec{b_1}$$
 ... (1)
 $\vec{r} = \vec{a_2} + \mu \vec{b_2}$... (2)

1. Passes through point A with the position vector $\overrightarrow{a_1}$ and is parallel to $\overrightarrow{b_1}$.

2. Passes through point B with the position vector $\overrightarrow{a_2}$ and is parallel to $\overrightarrow{b_2}$.

$$\overrightarrow{AB} = p.v. \text{ of } B - p.v. \text{ of } A = \overrightarrow{a_2} - \overrightarrow{a_1}.$$

The given lines are coplanar if and only if \overrightarrow{AB} is prep. To $\overrightarrow{b_1} \times \overrightarrow{b_2}$

$$\overrightarrow{AB} \cdot \left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) = 0$$
$$\left(\overrightarrow{a_2} - \overrightarrow{a_1}\right) \cdot \left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) = 0$$

d, the shortest distance between (1) and (2) = 0.

CARTESIAN FORM:

Let the coordinates of points A and B be (x₁, y₁, z₁) and (x₂, y₂, z₂) respectively.

Let $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$ have direction ratios:

 $\langle a_1, b_1, c_1 \rangle$ and $\langle a_2, b_2, c_2 \rangle$ respectively.

$$\overrightarrow{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$
$$\overrightarrow{b_1} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$$
$$\overrightarrow{b_2} = a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$$

MATHS

These given lines are coplanar if and only if

$$\overrightarrow{\mathbf{AB}} \cdot \left(\overrightarrow{\mathbf{b}_1} \times \overrightarrow{\mathbf{b}_2} \right) = \mathbf{0}$$

This can be written in Cartesian form as:

$ x_2 - x_1 $	$y_{2} - y_{1}$	$z_{2} - z_{1}$	
a ₁	\mathbf{b}_1	c_1	-0
a ₂	b_2	c_2	

Ex.1 The vector equations of the two lines are:

$$\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$$
$$\vec{r} = 2\hat{i} + 4\hat{j} + 5\hat{k} + \mu(3\hat{i} + 4\hat{j} + 5\hat{k})$$

Determine the shortest distance between these lines.

Sol. Comparing the provided equation with:

$$\vec{\mathbf{r}} = \vec{\mathbf{a}_1} + \lambda \vec{\mathbf{b}_1}$$
$$\vec{\mathbf{r}} = \vec{\mathbf{a}_2} + \mu \vec{\mathbf{b}_2},$$

We have:

$$\vec{b}_{1} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
$$\vec{b}_{3} = 3\hat{i} + 4\hat{j} + 5\hat{k}$$
$$\vec{a}_{1} = \hat{i} + 2\hat{j} + 3\hat{k},$$
$$\vec{a}_{2} = 2\hat{i} + 4\hat{j} + 5\hat{k}$$
$$\vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}$$
$$\hat{i}(15 - 16) - \hat{j}(10 - 12) + \hat{k}(8 - 9)$$
$$-\hat{i} + 2\hat{j} - \hat{k}$$

Ex.2 Determine the distance between the lines L₁ and L₂ represented by: $\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{i} - 5\hat{k} + u(2\hat{i} + 3\hat{i} + 6\hat{k}).$

Sol. Clearly L_1 and L_2 are parallel.

Comparing given equation with: $\vec{r} = \vec{a}_1 + \lambda \vec{b}$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}$, We have: $\vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ $|\vec{b}| = \sqrt{4+9+36} = \sqrt{49} = 7$ $\vec{a}_1 = \hat{i} + 2\hat{j} - 4\hat{k}; \vec{a}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k}$ $\vec{a}_2 - \vec{a}_1 = (3-1)\hat{i} + (3-2)\hat{j} + (-5+4)\hat{k}$ $2\hat{i} + \hat{j} - \hat{k}$ $\vec{b} \times (\vec{a}_2 - \vec{a}_1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 2 & 1 & -1 \end{vmatrix}$ $\hat{i}(-3-6) - \hat{j}(-2-12) + \hat{k}(2-6)$

The distance, denoted as d, between the provided lines is given by:

$$d = \left| \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{|\vec{b}|} \right|$$
$$= \left| \frac{-9\hat{i} + 14\hat{j} - 4\hat{k}}{7} \right|$$
$$= \frac{1}{7} |-9\hat{i} + 14\hat{j} - 4\hat{k}|$$
$$= \frac{1}{7} \sqrt{81 + 196 + 16}$$
$$= \frac{1}{7} \sqrt{293} \text{ units.}$$

Ex.3 Show that the two lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ intersect.

Also, determine the point of intersection of these lines.

Sol. The given lines are:

$$L_{1}: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \qquad \dots (1)$$

$$\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} = \sqrt{(-1)^{2} + (2)^{2} + (-1)^{2}}$$

$= \sqrt{1+4+1} = \sqrt{6}.$ $\vec{a_2} - \vec{a_1} = (2-1)\hat{i} + (4-2)\hat{j} + (5-3)\hat{k}$ $= \hat{i} + 2\hat{j} + 2\hat{k}$

d the shortest distance between the given line is given by:

$$d = \left| \frac{\left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) \cdot \left(\overrightarrow{a_2} - \overrightarrow{a_1}\right)}{\left|\overrightarrow{b_1} \times \overrightarrow{b_2}\right|} \right|$$
$$= \left| \frac{\left(-\hat{i} + 2\hat{j} - \hat{k}\right) \cdot \left(\hat{i} + 2\hat{j} + 2\hat{k}\right)}{\sqrt{6}} \right|$$
$$= \left| \frac{\left(-1\right)\left(1\right) + \left(2\right)\left(2\right) + \left(-1\right)\left(2\right)}{\sqrt{6}} \right|$$
$$= \left| \frac{-1 + 4 - 2}{\sqrt{6}} \right| = \left| \frac{1}{\sqrt{6}} \right| = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6} \text{ units.}$$

	$L_2: \frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{1}$	(2)		
Any point on L1 is	$(2\lambda+1, 3\lambda+2, 4\lambda+3)$	(3)		
Any point on L ₂ is	$(5\mu + 4, 2\mu + 1, \mu)$	(4)		
The line L ₁ and L ₂ will increase iff point (3) and (4) coincide.				
Iff $2\lambda + 1 =$	$2\lambda + 1 = 5\mu + 4, 3\lambda + 2 = 2\mu + 1, 4\lambda + 3 = \mu$			
Taking first two.	$2\lambda - 5\mu = 3$	(5)		
Taking middle two.	$3\lambda - 2\mu = -1$	(6)		
Taking last two.	$4\lambda - \mu = -3$	(7)		
Solving (5) and (6)	$\lambda = -1$ and $\mu = -1$.			
Putting in $(7)4(-1)+1=-3$				
\Rightarrow -3 = -3, Which is true.				
Hence the given line L ₁ and	d L2 intersect.			
Putting $\lambda = -1$ in (3), [or μ	= -1 in (4)],			

We get the reqd. point of intersection as. (-1, -1, -1).

Ex.4 Determine whether the line:

$$\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} + \hat{\mathbf{j}})$$
$$\vec{\mathbf{r}} = (2\hat{\mathbf{i}} - \hat{\mathbf{j}}) + \mu(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$$

Determine if they intersect. If they do, find their point of intersection.

Sol. The given line are:

$$\vec{r} = (\hat{i} - \hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j})$$

$$\vec{r} = (2\hat{i} - \hat{j}) + \mu(\hat{i} + \hat{j} - \hat{k})$$

$$\vec{r} = (1 + 2\lambda)\hat{i} + (-1 + \lambda)\hat{j} - \hat{k} \qquad \dots (1)$$

$$\vec{r} = (2 + \mu)\hat{i} + (-1 + \mu)\hat{j} - \mu\hat{k} \qquad \dots (2)$$

If the line (1) and (2) intersect, then for some value of λ and μ , we have:

$$1+2\lambda = 2+\mu \qquad \dots (3)$$

$$-1+\lambda = -1+\mu \qquad \dots (4)$$

$$-1--u \Rightarrow u = 1 \qquad \dots (5)$$

Putting in (4),

$$-1+\lambda = -1+1 \Rightarrow \lambda = 1.$$

Thus, $\lambda = 1$ and $\mu = 1$
These also satisfy (3)
Hence the line intersect.
Putting $\lambda = 1$ in (1).

$$\vec{r} = (1+2)\hat{i} + (-1+1)\hat{j} - \hat{k} = 3\hat{i} - \hat{k}$$

Putting $\mu = 1$ in (2)

Putting $\mu = 1$ in (2).

$$\vec{r} = (2+1)\hat{i} + (-1+1)\hat{j} - \hat{k} = 3\hat{i} - \hat{k}$$

Hence the point intersection is (3, 0, -1)

Determine the shortest distance and the vector equation of the line representing the Ex.5 shortest distance between the given lines.

$$\vec{r} = (3\hat{i} + 8\hat{j} + 3\hat{k}) + \lambda(3\hat{i} - \hat{j} + \hat{k})$$
$$\vec{r} = (-3\hat{i} - 7\hat{j} + 6\hat{k}) + \mu(-3\hat{i} + 2\hat{j} + 4\hat{k})$$

The provided equation in Cartesian form is: Sol.

$$L_{1}: \frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} (=\lambda) \qquad \dots (1)$$
$$L_{2}: \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4} (=\mu) \qquad \dots (2)$$

Any point on L₁ is $(3\lambda + 3, -\lambda + 8, \lambda + 3)$.

Any point L₂ is $(-3\mu - 3, 2\mu - 7, 4\mu + 6)$.

If the line of shortest distance intersection (1) in P and (2) in Q. then the directionratios of \overrightarrow{PQ} are.

$$<-3\mu-3-3\lambda-3, 2\mu-7+\lambda-8, 4\mu+6-\lambda-3>$$

 $<3\lambda+3\mu+6\cdot-\lambda-2\mu+15\cdot\lambda-4\mu-3>$

Since PQ is prep. To the line (1).

(3)
$$(3\lambda + 3\mu + 6) + (-1)(-\lambda - 2\mu + 15) + (1)(\lambda - 4\mu - 3) = 0$$

 $11\lambda + 7\mu = 0$... (3)

Since PQ is prep, to line (2).

$$(-3)(3\lambda + 3\mu + 6) + 2(-\lambda - 2\mu + 15) + 4(\lambda - 4\mu - 3) = 0$$

-7\lambda - 29\mu = 0 ... (4)

Solving (3) and (4), $\lambda = 0$ and $\mu = 0$.

Point P and Q are (3, 8, 3) and (-3, -7, 6) respectively.

S.D. = |PQ|
=
$$\sqrt{(-3-3)^2 + (-7-8)^2 + (6-3)^2}$$

= $\sqrt{36+225+9} = \sqrt{270} = 3\sqrt{30}$ units

And the equation of line S.D. is:

$$\vec{r} = (3\hat{i} + 8\hat{j} + 3\hat{k}) + \mu(-6\hat{i} - 15\hat{j} + 3\hat{k})$$

[Using $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$]

MATHS