MATHS

THREE DIMENSIONAL GEOMETRY

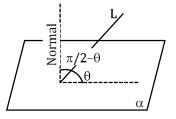
ANGEL BETWEEN A LINE AND A PLANE

(FOR COMPETITIVE EXAM)

ANGEL BETWEEN A LINE AND A PLANE

Let α represent the plane, and L (not parallel to α) denote the line. The angle between L and α is defined as the complement of the acute angle between the normal to the plane α and the line L.

Thus, if $\theta \left(0 < \theta < \frac{\pi}{2} \right)$ is the angle between α and L, then $\left(\frac{\pi}{2} - \theta \right)$ is the acute angle between the normal to the plane α and L.



Note: If L is perpendicular to α then $\theta = \frac{\pi}{2}$

To determine the angle between the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ and the plane

ax + by + cz + d = 0.

The given line is

$$\frac{\mathbf{x}-\mathbf{x}_1}{\mathbf{l}} = \frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{m}} = \frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{n}}.$$

The direction ratios of the line are represented by <l, m, n>.

The given plane is ax + by + cz + d = 0.

Direction-ratios of the normal to the plane are <a, b, c>

If ' θ ' $\left(0 < \theta < \frac{\pi}{2}\right)$ is the angle between the given line and plane, then $\left(\frac{\pi}{2} - \theta\right)$ is the acute angle between the given line and the normal to the given plane.

$$\cos\left(\frac{\pi}{2} - \theta\right) = \frac{|a| + bm + cn|}{\sqrt{l^2 + m^2 + n^2}\sqrt{a^2 + b^2 + c^2}}$$
$$\sin \theta = \frac{|a| + bm + cn|}{\sqrt{l^2 + m^2 + n^2}\sqrt{a^2 + b^2 + c^2}}$$

CLASS 12

MATHS

$$\theta = \sin^{-1} \frac{|a| + bm + cn|}{\sqrt{l^2 + m^2 + n^2} \sqrt{a^2 + b^2 + c^2}}, 0 < \theta < \frac{\pi}{2},$$

This is the required angle between the line and the plane.

VECTORIALLY:

Let the given plane be \vec{r} . $\vec{n} = p$... (1)

And the given line is parallel to. \vec{b} .

If ' ϕ ' is the angle between the normal to the plane \vec{n} and the given line (parallel to (\vec{b}) .

Then $\vec{n} \cdot \vec{b} = nb \cos \phi$.

Where $|\vec{n}| = n \text{ and } |\vec{n}| - b.$

$$\cos \phi = \frac{\vec{n} \cdot \vec{b}}{nb}$$
$$\phi = \cos^{-1} \left(\frac{\vec{n} \cdot \vec{b}}{nb} \right)$$

If $\boldsymbol{\theta}$ is the angle between the line and the plane, then:

$$\theta = \frac{\pi}{2} - \phi = \frac{\pi}{2} - \cos^{-1}\left(\frac{\vec{n} \cdot \vec{b}}{nb}\right) = \sin^{-1}\left(\frac{\vec{n} \cdot \vec{b}}{nb}\right)$$