VECTOR ALGEBRA

SCALAR (OR DOT) PRODUCT OF TWO VECTOR

SCALAR PRODUCT OF TWO VECTORS (DOT PRODUCT)

Definition:

Consider two non-zero vectors and inclined at an angle θ . The scalar product of \vec{a} with \vec{b} is represented as \vec{a} . \vec{b} and is defined as

Note:

(A) If angle θ is acute, the dot product of vectors. $\vec{a} \cdot \vec{b} > 0$; Conversely, if θ is obtuse, the $\vec{a} \cdot \vec{b} < 0$.

(B)
$$\vec{a} \cdot \vec{b} = 0 \vec{a} \perp \vec{b} (\vec{a} \neq 0, \vec{b} \neq 0)$$

- (C) Maximum value of \vec{a} . \vec{b} is $|\vec{a}| |\vec{b}|$
- (D) Minimum value of \vec{a} . \vec{b} is $-|\vec{a}||\vec{b}|$

Geometrical interpretation of scalar product

Let vectors \overrightarrow{OA} and \overrightarrow{OB} be representations of vectors \overrightarrow{A} and \overrightarrow{B} , respectively.

Let θ represent the angle between vectors \overrightarrow{OA} and \overrightarrow{OB}

Draw BL \perp OA and AM \perp OB.

From $\triangle OBL$ and $\triangle OAM$,

We have $OL = OB \cos \theta$ and $OM = OA \cos \theta$.

In this context, OL is referred to as the projection of vector \vec{b} on \vec{a} , and OM is the projection of vector \vec{a} on \vec{b} .

MATHS

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| (|\vec{b}| \cos \theta)$$

= $|\vec{a}| (OB \cos \theta) = |\vec{a}| (OL)$

= (Magnitude of \vec{a})(Projection of \vec{b} on \vec{a})(i)

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = |\vec{b}| \left(\left| \frac{1}{a} \right| \cos \theta \right)$$
$$= |\vec{b}| (OA \cos \theta) = |\vec{b}| (OM)$$

= (magnitude of \vec{b}) Projection of \vec{a} on \vec{b})(ii)

Therefore, from a geometric perspective, the scalar product of two vectors is the result of multiplying the magnitude of one vector by the projection of the other vector in its direction.

(i)
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \quad (0 \le \theta \le \pi)$$

Note that If θ is acute then $\,\vec{a}.\,\vec{b}>0$ & if θ is obtuse then $\vec{a}.\,\vec{b}<0$

(2) (i)
$$\vec{a}.\vec{a} = |\vec{a}| = (\vec{a})^2$$

(ii) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$ (Commutative)
(3) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (Distributive)
(4) $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}; (\vec{a}, \vec{b} \neq 0)$
(5) $\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 1$
 $\vec{i} \times \vec{j} = \vec{j} \times \vec{k} = \vec{k} \times \vec{i} = 0$
(6) $(\vec{m}\vec{a}) \cdot \vec{b} = \vec{a} \cdot (\vec{m}\vec{b}) = \vec{m}(\vec{a} \cdot \vec{b})$ where \vec{m} is a scalar.
(7) Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ (Provided $|\vec{b}| \neq 0$)
(8) The vector component of \vec{a} along $\vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{\vec{b}^2}\right)\vec{b}$ and perpendicular to
 $\vec{b} = \vec{a} - \left(\frac{\vec{a} \cdot \vec{b}}{\vec{b}^2}\right)\vec{b}$ [by triangle law of vector Addition]
(9) The angle \emptyset between $\vec{a} \otimes \vec{b}$ is given by $\cos \phi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} 0 \le \phi \le \pi$

MATHS

(10) If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \,\&\, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
, then $\vec{a} \cdot \vec{b} = a_1 \,b_1 + a_2 \,b_2 + a_3 \,b_3$
 $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}, |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2}$

(11) Maximum value of
$$\vec{a} \cdot \vec{b} = \vec{a} || \vec{b} |$$

- (12) Minimum value of $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$
- (13) Any vector \vec{a} can be written as $\vec{a} = (a \cdot \hat{i})\hat{i} + (a \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k}$
- (14) $|\vec{a} \pm \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 \pm 2|\vec{a}||\vec{b}|\cos\theta}$, where θ is the angle between the vectors.

VECTOR EQUATION OF ANGLE BISECTOR

A vector along the bisector of the angle between

two vectors $\vec{a} \& \vec{b}$ is represented by $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$.

$$\begin{array}{c}
C' & A \\
\hline
\vec{a} & -\vec{b} \\
B' & 0 \\
\end{array}$$

Hence bisector of the angle between the two

vectors $\vec{a} \& \vec{b}$ is $\lambda(\hat{a} + \hat{b})$, where $\lambda \in R^+$

Bisector of the exterior angle of

 $\vec{a}\,\&\,\vec{b}$ is $\lambda(\hat{a}+\hat{b})$, where $\lambda\in R^+$

Ex.1 Determine the value of p that satisfies the vectors...

$$\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$$
 and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are

(i) Perpendicular (ii) parallel

Sol. (i)

$$\vec{a} \perp \vec{b}$$
$$\vec{a} \cdot \vec{b} = 0$$
$$(3\hat{i} + 2\hat{j} + 9\hat{k}) \cdot (\hat{i} + p\hat{j} + 3\hat{k}) = 0$$
$$3 + 2p + 27 = 0$$
$$P = -15$$

|AC|

|AB|

B

(ii) Vectors $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel iff $\frac{3}{1} = \frac{2}{p} = \frac{9}{3}$ $3 = \frac{2}{p}$ $p = \frac{2}{3}$

Ex.2 The vector, \vec{c} , oriented along the internal bisector of the angle between the vector $7\hat{i} - 4\hat{j} - 4\hat{k}$ And $-2\hat{i} - \hat{j} + 2\hat{k}$ with $|\vec{c}| = 5\sqrt{5}$ is.

Sol. Let
$$\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$$

And $\vec{b} = -2\hat{i} - \hat{j} + 2\hat{k}$

Internal bisector divides the BC in the ratio of $|\overrightarrow{AB}|$: $|\overrightarrow{AC}|$

$$| \overrightarrow{AD} |= 9, | \overrightarrow{AC} |= 3$$
$$| \overrightarrow{AD} |= \left(\frac{9(-2\hat{i} - \hat{j} + 2\hat{k}) + 3(7\hat{i} - 4\hat{j} - 4\hat{k})}{9 + 3} \right) = \frac{\hat{i} - 7\hat{j} + 2\hat{k}}{4}$$
$$\vec{c} = \pm \left(\frac{\overrightarrow{AD}}{\overrightarrow{AD}} \right) 5\sqrt{6} = \pm \frac{5}{3}(\hat{i} - 7\hat{j} + 2k)$$

Ex.3 If $a = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ then find

- (i) Component of \vec{b} along \vec{a}
- (ii) Component of \vec{b} in plane of $\vec{a} \& \vec{b}$ but \perp to \vec{a}

Sol. (i) Component of \vec{b} along \vec{a} is $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right)\vec{a}$ $\vec{a} \cdot \vec{b} = 2 - 1 + 3 = 4$ $|\vec{a}|^2 = 3$ $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\right)\vec{a} = \frac{4}{3}\vec{a} = \frac{4}{3}(\hat{i} + \hat{j} + \hat{k})$

(ii) The projection of vector \vec{b} in plane of $\vec{a} \& \vec{b}$ but \perp to \vec{a} is

$$\vec{\mathbf{b}} - \left(\frac{\mathbf{a} \cdot \hat{\mathbf{b}}}{|\mathbf{a}|^2}\right) \vec{\mathbf{a}} = \frac{1}{3} (2\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 5\hat{\mathbf{k}})$$

MATHS

Ex.4 If the magnitudes of vectors \vec{a} , \vec{b} , \vec{c} are 3, 4 and 5 respectively, and \vec{a} is related to $\vec{b} + \vec{c}$, and \vec{b} is related to and $\vec{C} + \vec{a}$, \vec{c} and $\vec{a} + \vec{b}$ are perpendicular to each other, then modulus of $\vec{a} + \vec{b} + \vec{c}$ is.

Sol.

$$\vec{a} \perp (b + \vec{c})$$
$$\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$$
$$\vec{b} \perp (\vec{c} + \vec{a})$$
$$\vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0$$
$$\vec{c} \perp (\vec{a} + \vec{b})$$
$$\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0$$
$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$$
$$|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$$
$$= 9 + 16 + 25 = 50$$
$$|\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}$$

Ex.5 If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, Solve the angle between \vec{a} , and \vec{b} .

$$\vec{a} + \vec{b} = -\vec{c}$$

$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (-\vec{c}) \cdot (-\vec{c})$$

$$|\vec{a} + \vec{b}|^2 = |\vec{c}|^2$$

$$|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2$$

$$|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta = |\vec{c}|^2$$

$$9 + 25 + 2(3) (5) \cos\theta = 49$$

$$\cos\theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

 $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

Ex.6 Prove that the medians to the base of an isosceles triangle is perpendicular to the base.

Sol. Due to the isosceles nature of the triangle, we obtain...

$$AB = AC \qquad \dots \dots (i)$$

Now. $\overrightarrow{AP} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2}$ where P is mid-point of BC.

 $\overrightarrow{\text{BC}} = \overrightarrow{c} - \overrightarrow{b}$

PB(b) A(0)

Also

$$\overrightarrow{AP} \cdot \overrightarrow{BC} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2} \cdot (\overrightarrow{c} - \overrightarrow{b}) = \frac{1}{2} (c^2 - b^2)$$
$$= \frac{1}{2} (AC^2 - AB^2) = 0 \qquad \text{{by (i)}}$$

Median AP is perpendicular to base BC.