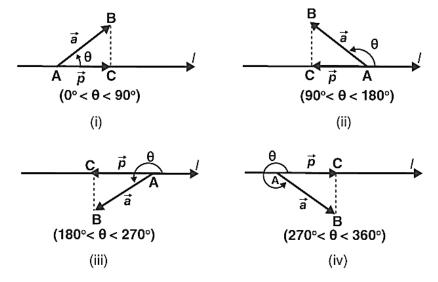
CLASS 12

MATHS

VECTOR ALGEBRA

PROJECTION OF A VECTOR ON A LINE

Assume that a vector \overrightarrow{AB} forms an angle θ in the counter clockwise direction with a specified directed line, denoted as l, as illustrated in the following figure.



The projection of vector \overrightarrow{AB} onto vector I results in a vector \overrightarrow{p} (designated as such), with a magnitude of $|\overrightarrow{AB}| |\cos\theta|$. The direction of \overrightarrow{p} aligns with or opposes that of line I, depending on whether $\cos\theta$ is positive or negative. This vector \overrightarrow{p} is termed the projection vector, and its magnitude $|\overrightarrow{p}|$ is referred to as the projection of vector $|\overrightarrow{AB}|$ onto the directed line I.

As an illustration, in each of the figures below, the projection vector of vector \overrightarrow{AB} onto line I is represented by vector \overrightarrow{AC} .

Observations:

- If p̂ is the unit vector along a line I, then the projection of vector a onto the line I is expressed as a. p̂.
- (2) The projection of vector \vec{a} onto another vector \vec{b} is determined by

$$\vec{a}.\hat{b}, \text{ or } \vec{a}\left(\frac{\vec{b}}{|\vec{b}|}\right), \text{ or } \frac{1}{|\vec{b}|}(\vec{a}\cdot\vec{b})$$

(3) When $\theta = 0$, the projection vector of vector \overrightarrow{AB} will be \overrightarrow{AB} itself. Conversely, if $\theta = \pi$, the projection vectors of vector \overrightarrow{AB} will be \overrightarrow{BA}

CLASS 12

(4) If
$$\theta = \frac{\pi}{2}$$
 or $\theta = \frac{3\pi}{2}$, then the projection vector of \overrightarrow{AB} will be zero vector.

Note:

If α , β and γ are the direction angles of a vector, $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ its direction cosines can be expressed as

$$\cos \alpha = \frac{\vec{a} \cdot \hat{i}}{|\vec{a}|| \hat{i}|} = \frac{a_1}{|\vec{a}|}$$
$$\cos \beta = \frac{a_2}{|\vec{a}|}$$
$$\cos \gamma = \frac{a_3}{|\vec{a}|}$$

Additionally, observe that $|\vec{a}| \cos \alpha$, $|\vec{a}| \cos \beta$ and $|\vec{a}| \cos \gamma$ are the projections of vector \vec{a} along the OX, OY, and OZ axes, denoted as a_1 , a_2 , and a_3 , respectively. These scalar components a_1 , a_2 , and a_3 precisely represent the projections of vector \vec{a} along the x-axis, y-axis, and z-axis. Furthermore, if vector \vec{a} is a unit vector, it can be expressed in terms of its direction cosines as

$$\vec{a} = \cos\alpha \hat{i} + \cos\beta \hat{j} + \cos\gamma \hat{k}$$

- **Ex.1** Determine the angle between two vectors \vec{a} and \vec{b} , each having magnitudes of 1 and 2, respectively. Additionally, it is known that the dot product of vectors \vec{a} . $\vec{b} = 1$.
- **Sol.** We know that, $\vec{a} \cdot \vec{b} = 1$

$$|\vec{a}| = 2$$
 and $|\vec{b}| = 1$

Hence, the angle $\boldsymbol{\theta}$ between two vectors is,

$$\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$$
$$\theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$