# SOLUTION & COLLIGATIVE PROPERTIES

## VAPOUR PRESSURE OF LIQUID SOLUTIONS

## VAPOUR PRESSURE OF LIQUID SOLUTIONS

### VAPOUR PRESSURE

Under constant temperature conditions, the pressure exerted by a liquid's vapors on its surface, when the liquid and its vapors are in a state of equilibrium, is referred to as vapor pressure.

### RAOULT'S LAW:

In accordance with this principle, the partial pressure of any volatile components within a solution at a consistent temperature equals the vapor pressure of the pure components multiplied by the mole fraction of that particular component present in the solution.

### (i) For liquid – liquid solution

Consider a mixture (solution) formed by combining  $n_A$  moles of liquid A and  $n_B$  moles of liquid B. Let  $P'_A$  and  $P'_B$  represent the partial pressures of the two constituents, A and B, within the solution, while  $P^0_A$  and  $P^0_B$  denote their respective vapor pressures in their pure states. Thus, according Raoul's law

$$P'_{A} = \frac{n_{A}}{n_{A}+n_{B}} P^{0}_{A} \qquad \dots (i)$$
Partial pressure of A = mole fraction of A × P^{0}\_{A} = X\_{A} P^{0}\_{A}
and  $P'_{B} = \frac{n_{B}}{n_{A}+n_{B}} P^{0}_{B} \qquad \dots (ii)$ 

Partial pressure of B = mole fraction of B  $\times$  P<sup>0</sup> = X<sub>B</sub>P<sub>D</sub><sup>0</sup> If total pressure be P<sub>s</sub> , then

$$\begin{split} P_{S} &= P'_{A} + P'_{B} \\ &= \frac{n_{A}}{n_{A} + n_{B}} P^{0}_{A} + \frac{n_{B}}{n_{A} + n_{B}} P^{0}_{B} \\ &= X_{A} P^{0}_{A} + X_{B} P^{0}_{D} \qquad ....(iii) \\ P_{S} &= X_{A} P^{0}_{A} + (1 - X_{A}) P^{0}_{D} \quad [\because X_{A} + X_{B} = 1] \\ P_{S} &= X_{A} P^{0}_{A} - X_{A} P^{0}_{B} + P^{0}_{B} . \end{split}$$

$$P_{S} = X_{A} [P_{A}^{0} - P_{B}^{0}] + P_{B}^{0} \qquad \dots (iV)$$

Equation 1, 2 and 3 are the straight-line equation so we can draw it as follows.



#### Class-12<sup>th</sup>

#### Chemistry

(ii) For Solid - liquid solution A = non-volatile solids B = volatile liquidAccording to Raoul's law - $P_{\rm m} = X_{\rm A} P_{\rm A}^0 + X_{\rm B} P_{\rm B}^0$ ÷ A,  $P_{\Delta}^{0} = 0$ For :.  $P_m = X_B P_B^0$ Let  $P_B^0 = P^0$  Vapour pressure of pure state of solvent. here  $X_B$  is mole fraction of solvent  $P_s = \frac{n_B}{n_A + n_B} P^0$  $P_s \propto \frac{n_B}{n_A + n_B}$ i.e., vapour pressure of solution  $\infty$  mole fraction of solvent  $P_s = X_B P_B^0$ ⇒  $P_{\rm s} = (1 - X_{\rm A}) P_{\rm B}^0$ ⇒  $P_{\rm s} = P_{\rm B}^0 - X_A P_{\rm B}^0$ ⇒  $\frac{P_B^0 - P_s}{P_B^0} = X_A$  $\frac{\mathbf{P}^0 - P_s}{\mathbf{p}^0} = X_A$  $\frac{\mathbf{P}^0 - P_S}{\mathbf{P}^0} - \frac{n_A}{n_A + n_B}$  $\frac{\mathbf{P}^0}{\mathbf{P}^0 - P_{\rm s}} = \frac{n_A + n_B}{n_A}$ or  $\frac{P^0}{P^0 - P_c} - 1 + \frac{n_B}{n_A}$ or  $\frac{P^0}{P^0 - P_s} - 1 = \frac{n_B}{n_A}$ or  $\frac{P_s}{P^0 - P_s} = \frac{n_B}{n_A}$  $\frac{P^0 - P_S}{P_S} = \frac{n_A}{n_B}$ or  $\frac{P^0 - P_S}{P_S} = \frac{w_A \cdot m_B}{m_A \cdot w_B}$ or  $\frac{wM}{mW}$ 

2