Class-12th

SOLUTION & COLLIGATIVE PROPERTIES

EXPRESSING CONCENTRATION OF SOLUTIONS

EXPRESSING CONCENTRATION OF SOLUTIONS CONCENTRATION: Mass and Volume Percentage:

MOLARITY (MOLAR CONCENTRATION)

It is expressed as the quantity of moles of the solute dissolved per litre or per cubic decimetre of the solution. i.e.,

Molarity (M) = $\frac{\text{Number of moles of solute}}{\text{Number of litres of solution}}$ or

 $Molarity \times Number of litres of solution = Number of moles of solute Let w_A g of the solute of molecular mass m_A be dissolved in V litre of solution.$

Molarity of solution
$$=\frac{w_A}{m_A \times V}$$

or

Iolarity
$$\times$$
 m_A = $\frac{w_A}{v}$ = Strength of the solution

If V is taken in mL (cm³), then Molarity of the solution $= \frac{W_A}{m_A \times V} \times 1000$

The unit of molarity is mol L^{-1} s mol or mol dm^3

Percentage by weight

The weight fraction of the solute is determined by the amount of solute in grams dissolved in one gram of the solution. Therefore,

weight fraction =
$$\frac{w}{w+W}$$

Where 'w' grams of solute is dissolved in W grams of solvent.

weight percent =
$$\frac{\text{weight of solutein grams} \times 100}{\text{weight of solution in grams.}}$$

w = $\frac{\text{w} \times 100}{\text{w} + \text{W}}$

Percent by volume (Volume fraction)

This technique is employed for liquid-in-liquid solutions. The volume fraction is defined as the volume of liquid (solute) in millilitres dissolved in one millilitre of the solution.

Volume fraction =
$$\frac{\text{Volume of liquid solute in mL}}{\text{volume of solution in mL}}$$

Volume percent = $\frac{\text{Volume of solute} \times 100}{\text{Volume of solution}}$

Ex. If we have 6% w/w urea solution with density 1.060 g/mL, then calculate its strength in g/L ?

Sol. 6 g urea is present in 100 gm solution.

$$6 \text{ g in} \frac{100}{1.060} \text{ mL}$$

$$\frac{100}{1.060} \text{ mL} \longrightarrow 6 \text{ gm}$$

∴ 1000 mL = $\frac{6}{100} \times 1.060 \times 1000 = 10.6 \times 6 = 63.6$