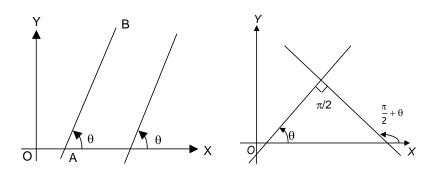
CLASS 11

MATHS

STRAIGHT LINES

SLOPE OF A LINE

SLOPE OF A LINE



If a straight line AB makes an angle $\boldsymbol{\theta}$ with the positive direction of the x-axis,

 $\tan\theta$ is called the slope or gradient of the straight line and is usually denoted by the letter 'm'.

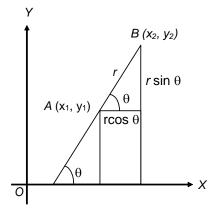
It follows that

- (i) if two lines are parallel, their slopes are equal, for the lines must be equally inclined to the positive direction of the x-axis.
- (ii) if two lines are perpendicular the product of their slopes is -1, for if one line is inclined at an angle θ to the x-axis, the other must be inclined at

$$\frac{\pi}{2} + \theta$$
, hence their slopes are $\tan \theta$ and $\tan \left(\frac{\pi}{2} + \theta\right)$, i.e., $\tan \theta$ and $-\cot \theta$.

 \therefore The product is -1.

(i) TO FIND THE SLOPE OF THE LINE JOINING ANY TWO POINTS (x1, y1) AND (x2, y2)



CLASS 11

MATHS

Let the segment joining of the points be of length r and let the line be inclined to the x-axis at angle θ .

$$\therefore \qquad r \cos \theta = x_2 - x_1$$

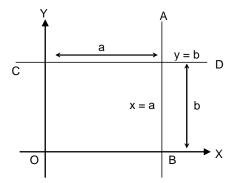
$$r \sin \theta = y_2 - y_1$$
and therefore
$$\tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$$

and tan θ is the required slope. The expression for the slope is, therefore,

 $m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{\text{difference of the ordinates of the two points}}{\text{difference of the abscissa}}$

(ii) LINES PARALLEL TO THE CO ORDINATE AXES

Let the line AB be parallel to the Y-axis and at a distance 'a' from it. Every point on AB will have its abscissa 'a', and hence the equation of AB is x = a. By putting a =0, we deduce that the equation of the y-axis is x = 0.



Similarly, the equation of the straight line CD parallel to the X-axis and at a distance 'b' from it is y = b. By putting b = 0 we deduce that the equation to the X-axis is y = 0

(iii) ANGLE BETWEEN TWO GIVEN STRAIGHT LINES

Let AB, AC have slopes m_1 , m_2 and be inclined to the X-axis at θ_1 , θ_2 .

Then
$$\angle = \theta_1 - \theta_2 = \theta$$

 \therefore $\tan \angle CAB = \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2}$
i.e., $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$
where θ is the angle between AB and AC

^

where θ is the angle between AB and AC

...

CLASS 11

MATHS

Note: It is customary to take θ , as the acute angle between the two lines, and hence mostly one can take the above formula as $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ If the lines are parallel, $\tan \theta = 0$, since $\theta = 0$ \therefore $m_1 - m_2 = 0$ \therefore $m_1 = m_2$ and if the lines are perpendicular, $\tan \theta$ is not defined, since $\theta = \frac{\pi}{2}$, and therefore $m_1 m_2 + 1 = 0$ \therefore $m_1 m_2 = -1$.

Ex.1 Find the acute angle between the two lines with slopes $\frac{1}{5}$ and $\frac{3}{2}$.

Sol. If the angle between the lines is θ ,

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
$$\tan \theta = \left| \frac{\frac{1}{5} - \frac{3}{2}}{1 + \left(\frac{1}{5}\right) x \left(\frac{3}{2}\right)} \right| = |-1| = 1$$

Therefore the angle is 45°.