MATHS

SEQUENCES AND SERIES

RELATION BETWEEN AM & GM

Relations between A.M. and G.M.

For two positive real numbers, a and b

$$A = \frac{a+b}{2}, G = \sqrt{ab}$$

$$A > G \text{ if } a \neq b \qquad \dots(i)$$

$$A = G \text{ if } a = b \qquad \dots(ii)$$

So, combining (i) & (ii),

We have $A \ge G$, and equality holds when a = b.

If a₁, a₂, a₃... a_n are n positive numbers,

Then, Above discussion leads to the result that,

$$\frac{a_1+a_2+a_3+\dots+a_n}{n} \ge \sqrt[n]{a_1a_2a_3\dots}a_n$$

Ex.1 There are n arithmetic means between 1 and 31, and the 7th mean to the n - 1th mean forms a ratio of ${}^{\circ}$ 5 : 9. Find n ?

Sol. Let d and A_j denote the common difference and j^{th} Arithmetic mean respectively;

then,	$d = \frac{31-1}{n+1} = \frac{30}{n+1}$
\Rightarrow	$A_7 = 1 + 7\frac{30}{n+1} = 1 + \frac{210}{n+1}$
\Rightarrow	$A_{n-1} = 1 + (n-1)\frac{30}{n+1}$
\Rightarrow	$\frac{A_7}{A_{n-1}} = \frac{5}{9}$
\Rightarrow	$9 + \frac{1890}{n+1} = 5 + \frac{150(n-1)}{n+1}$
\Rightarrow	146 n = 2044
\Rightarrow	n = 14.

Ex2. If one arithmetic mean (A.M.), A, and two geometric means (G.M.s) p and q are inserted between any two given numbers, then it can be shown that $p^3 + q^3 = 2Apq$.

CLASS 11

MATHS

Sol. Let the two given numbers be a and b;

then,2A = a + b ...(1)a, p, q, b are in G.P. $p^2 = aq$ and $q^2 = bp$ \Rightarrow $p^2 = aq$ and $q^2 = bp$ \Rightarrow $p^3 = apq$ and $q^3 = bpq$ \therefore $p^3 + q^3 = (a + b) pq = 2A pq$

Special Series

Sigma (S) notation : S indicates sum i.e., $\sum_{i=1}^{n} i = \sum n = 1 + 2 + 3 + \dots + n$

- (i) $\sum_{l=1}^{n} \frac{i+1}{i+2} = \frac{1+1}{1+2} + \frac{2+1}{2+2} + \frac{3+1}{3+2} + \dots + \frac{n+1}{n+2}$
- (ii) $\sum_{1=1}^{m} a = a + a + \dots + a \text{ m times } = a \text{ m where } a \text{ is constant}$

(iii)
$$\sum_{l=1}^{m} a_{l}^{l} = a \sum_{l=1}^{m} i = a(1 + 2 + \dots + m)$$

(iv) $\sum_{l=1}^{m} (i^3 - 2i^2 + i) = \sum_{l=1}^{m} i^3 - 2 \sum_{l=1}^{m} i^2 + \sum_{l=1}^{m} i$

Important Results

$$\Sigma n = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

(ii) Sum of the squares of the first n natural numbers.

$$\operatorname{Sn}^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(iii) Sum of the cubes of the first n natural numbers.

$$\operatorname{Sn}^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 = (\Sigma n)^2$$

(iv) Sum of the first n terms of a sequence $T_n = an^3 + bn^2 + cn + d$

$$S_n = a\Sigma n^3 + b\Sigma n^2 + c\Sigma n + dn$$

Ex.3 Calculate the sum of the series 3.5 + 6.8 + 9.11 + ... up to n terms.

Sol. nth term of 3, 6, 9, is 3n

nth term of 5, 8, 11, is (3n + 2)

∴
$$T_n = 3n (3n + 2) = 9n^2 + 6n$$

$$\therefore \qquad S_n = 9Sn^2 + 6Sn$$

$$=\frac{9n(n+1)(2n+1)}{6}+\frac{6n(n+1)}{2}$$

CLASS 11

MATHS

$$= \frac{3}{2}n(n+1)[2n+1+2]$$
$$= \frac{3n(n+1)(2n+3)}{2}$$

ARITHMETICO-GEOMETRIC SERIES (A.G. S.) (For competitive exam)

 n^{th} term of A.G.. S. = (n^{th} term of an A.P.) × (n^{th} term of a G.P.)

If a, (a + d), (a + 2d) + be an A.P. & b, br, $br^2 +$ be a G.P.

Then $ab + (a + d) br + (a + 2d)br^2 +$ is the corresponding A.G.S. T_n of A.G.S. = (T_n of A.P.) × (T_n of G.P.)