BINOMIAL THEOREM

GENERAL TERM AND MIDDLE TERM

Pascal's Triangle

A triangular arrangement of numbers is presented, depicting coefficients for the expansion of $(x + y)^n$. The initial row corresponds to n = 0, the second to n = 1, and so forth. Each row commences and concludes with 1. Intermediate numbers are derived by summing the two adjacent numbers in the row above.

IMPORTANT TERMS IN THE BINOMIAL EXPANSION

(a) General Term:

The general term or the $(r + 1)^{th}$ term in the expansion of $(x + y)^{n}$ is given by

 $T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$

Ex.1 Find

(i)
$$28^{\text{th}}$$
 term of $(5x + 8y)^{30}$

(ii)
$$7^{\text{th}} \text{ term of } \left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$

Sol.

(i)

$$T_{27 + 1} = {}^{30}C_{27} (5x)^{30 - 27} (8y)^{27}$$

$$= \frac{30!}{3!27!} (5x)^3 \cdot (8y)^{27}$$
(ii)
7th term of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$
 $T_6 + 1 = {}^{9}C_6 \left(\frac{4x}{5}\right)^{9-6} \left(-\frac{5}{2x}\right)^6$
 $= \frac{9!}{3!6!} \left(\frac{4x}{5}\right)^3 \left(\frac{5}{2x}\right)^6$
 $= \frac{10500}{x^3}$

MATHS

- (b) Middle Term: The term or terms at the center of the expansion of $(x + y)^n$ is (are):
 - (i) If n is even, there exists only one central term, and it is determined by:

$$\mathbf{T}_{\underline{(n+2)}_{2}} = \mathbf{C}_{\underline{n}}^{n} \cdot \mathbf{x}^{\underline{n}} \cdot \mathbf{y}^{\underline{n}}$$

(ii) If n is odd, there are two central terms, which are:

$$\operatorname{T}_{\underline{(n+1)}}_{\underline{2}} \& \operatorname{T}_{\underline{(n+1)}_{\underline{2}+1}}$$

The central term possesses the highest binomial coefficient, and in the case of two central terms, their coefficients will be identical.

ⁿC_r will be maximum

When $r = \frac{n}{2}$ if n is even

When $r = \frac{n-1}{2}$ or $\frac{n+1}{2}$ if n is odd

In the expansion of $(1 + x)^n$, the term with the highest binomial coefficient will be the central term.

Ex.2 Determine the central term or terms in the expansion of

(i)
$$\left(1 - \frac{x^2}{2}\right)^{14}$$
 (ii) $\left(3a - \frac{a^3}{6}\right)^9$
(i) $\left(1 - \frac{x^2}{2}\right)^{14}$ (ii) $\left(1 - \frac{x^2}{2}\right)^{14}$

Sol.

Here, n is even, therefore middle term is $\left(\frac{14+2}{2}\right)^{\text{th}}$ term. It means T₈ is middle term

(ii)
$$T_{s} = C_{7}^{14} \left(-\frac{x^{2}}{2}\right)^{7} = -\frac{429}{16} x^{14} \left(3a - \frac{a^{3}}{6}\right)^{9}$$

Here, n is odd therefore, middle terms are $\left(\frac{9+1}{2}\right)^{\text{th}} \& \left(\frac{9+1}{2}+1\right)^{\text{th}}$ It means T₅ & T₆ is middle terms

$$T_5 = C_4^9 (3a)^{9-4} \left(-\frac{a^3}{6}\right)^4 = \frac{189}{8} a^{17}$$
$$T_6 = C_5^9 (3a)^{9-5} \left(-\frac{a^3}{6}\right)^5 = -\frac{21}{16} a^{19}$$

(c) Term Independent of x :

A term that is independent of x does not contain x. Therefore, determine the value of r for which the exponent of x is zero.

Ex.3 Find the term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\left(\frac{3}{2x^2}\right)}\right]^{10}$.

Sol. General term in the expansion is

$$C_{r}^{10} \left(\frac{x}{3}\right)^{\frac{r}{2}} \left(\frac{3}{2x^{2}}\right)^{\frac{10-r}{2}}$$
$$C_{r}^{10} x^{\frac{3r}{2}-10} \cdot \frac{3^{5-r}}{\frac{2^{10-r}}{2}}$$

For constant term,

$$r = \frac{10}{3}$$

Which is not an integer. Therefore, there will be no constant term.

(d) Numerically Greatest Term :

The binomial expansion of $(a + b)^n$ is expressed as follows: – $(a + b)^n = {}^nC_0 a^n b^0 + {}^nC_1 a^{n-1} b^1 + {}^nC_2 a^{n-2} b^2 + ... + {}^nC_r a^{n-r} b^r + + {}^nC_n a^0 b^n$ By substituting specific values for a and b on the right-hand side (RHS), each term in the binomial expansion will assume a particular value. The term with the numerically highest value is referred to as the numerically greatest term.

 T_r and T_{r+1} be the r^{th} and $(r + 1)^{th}$ terms respectively

$$\begin{split} T_{r} &= {}^{n}C_{r-1} \; a^{n-(r-1)} \; b^{r-1} \\ T_{r+1} &= {}^{n}C_{r} \; a^{n-r} \; b^{r} \\ \left| \frac{T_{r+1}}{T_{r}} \right| &= \left| \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} \frac{a^{n-r}b^{r}}{a^{n-r+1}b^{r-1}} \right| &= \frac{n-r+1}{r} \cdot \left| \frac{b}{a} \right| \\ & \left| \frac{T_{r+1}}{T_{r}} \right| &\geq 1 \\ & \left(\frac{n-r+1}{r} \right) \left| \frac{b}{a} \right| &\geq 1 \\ & \left(\frac{n-r+1}{r} - 1 \geq \left| \frac{a}{b} \right| \\ & r \leq \frac{n+1}{1+\left| \frac{a}{b} \right|} \end{split}$$

MATHS

Case-I: When $\frac{n+1}{1+1}$	$\frac{1}{\frac{a}{b}}$ is an integer (say m),
Then,	
(i)	$T_{r+1} > T_r$
When,	r < m (r = 1, 2, 3, m - 1)
i.e.	$T_2 > T_1, T_3 > T_2, \dots, T_m > T_{m-1}$
(ii)	$T_{r+1} = T_r$
When,	r = m
i.e.	$\mathbf{T}_{m+1} = \mathbf{T}_{m}$
(iii)	$T_{r+1} < T_r$
When,	r > m (r = m + 1, m + 2,n)
i.e.	$T_{m+2} < T_{m+1}$, $T_{m+3} < T_{m+2}$, $T_{n+1} < T_n$

Conclusion

When $\frac{n+1}{1+|\frac{a}{b}|}$ is an integer, say m, then T_m and T_{m+1} will be numerically

greatest terms (both terms are equal in magnitude)

Case - II When
$$\frac{n+1}{1+|\frac{a}{b}|}$$
 is not an integer (Let its integral part be m),

then

enen	
(i)	$T_{r+1} > T_r$
when	$r < \frac{n+1}{1+ \frac{a}{b} }$ (r = 1, 2, 3,, m-1, m)
i.e.	$T_2 > T_1$, $T_3 > T_2$,, $T_{m+1} > T_m$
(ii)	$T_{r+1} < T_r$
when	$r > \frac{n+1}{1+ \frac{a}{b} }$ (r = m + 1, m + 2,n)
i.e.	$T_{m+2} < T_{m+1}$, $T_{m+3} < T_{m+2}$,, $T_{n+1} < T_n$

Conclusion

When $\frac{n+1}{1+|\frac{a}{b}|}$ is not an integer and its integral part is m, then T_{m+1} will

be the numerically greatest term.

Notes:

(i) In any binomial expansion, the central term or terms possess the highest binomial coefficient.

In the expansion of $(a + b)^n$

n	No. of Greatest Binomial Coefficient	Greatest Binomial Coefficient		
Even	1	$^{n}C_{\frac{n}{2}}$		
Odd	2	$^{n}C_{\frac{(n-1)}{2}}$ and $^{n}C_{\frac{(n+1)}{2}}$ (Values of both these coefficients are equal)		

- (ii) In order to obtain the term having numerically greatest coefficient, put a = b = 1, and proceed as discussed above.
- **Ex.4** Determine the numerically greatest term in the expansion of $(3 5x)^{11}$ when x is equal to?
- Sol. Using $\frac{n+1}{1+|\frac{a}{b}|} - 1 \le r \le \frac{n+1}{1+|\frac{a}{b}|}$ $\frac{11+1}{1+|\frac{3}{-5x}|} - 1 \le r \le \frac{11+1}{1+|\frac{3}{-5x}|}$ Solving we get $2 \le r \le 3$ r = 2, 3

So, the greatest terms are ${\rm T}_{2+1}~~{\rm and}~~{\rm T}_{3+1}.$

Greatest term (when r = 2)

$$T_3 = {}^{11}C_2.3^9 (-5x)^2 = 55.3^9 = T_4$$

From above we say that the value of both greatest terms are equal.

- **Ex.5** For a positive integer n, demonstrate that the integral part of $(7 + 4\sqrt{3})^n$ is an odd number.
- **Sol.** Let $(7 + 4\sqrt{3})^n = I + f$ (i)

Where I & f are its integral and fractional parts respectively.

It means	0 < f < 1
Now	$0 < 7 - 4\sqrt{3} < 1$

MATHS

Let,

$$0 < (7 - 4\sqrt{3})^n < 1$$

 $(7 - 4\sqrt{3})^n = f'$ (ii)
 $0 < f' < 1$

Adding (i) and (ii)

I+ f+ f' =
$$(7+4\sqrt{3})^n + (7-4\sqrt{3})^n$$

2 [${}^{n}C_07^n + {}^{n}C_27^{n-2} (4\sqrt{3})^2 +$]

I + f + f' = even integer

(f+f' must be an integer)

$$0 < f + f' < 2$$

 $f + f' = 1$

I+1=even integer therefore I is an odd integer.

Ex.6 What is the remainder when dividing 5⁹⁹ by 13?

Sol.
$$5^{99} = 5.5^{98} = 5. (25)^{49} = 5 (26 - 1)^{49}$$

 $5 [^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - {}^{49}C_{49} (26)^0]$
 $5 [^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - 1]$
 $5 [^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - 13] + 60$
 $13 (k) + 52 + 8 (where k is a positive integer)$
 $13 (k + 4) + 8$

Hence, remainder is 8.

Some Standard Expansions

(i) Consider the expansion

$$(x + y)^n = \sum_{r=0}^{n} {}^nC_r x^{n-r} y^r$$

$$= {}^{n}C_{0} x^{n} y^{0} + {}^{n}C_{1} x^{n-1} y^{1} + \dots + {}^{n}C_{r} x^{n-r} y^{r} + \dots + {}^{n}C_{n} x^{0} y^{n} \dots (i)$$

(ii) Now replace $y \rightarrow -y$ we get

$$(x - y)^{n} = \sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{n-r} y^{r}$$
$$= {}^{n}C_{0} x^{n}y^{0} - {}^{n}C_{1} x^{n-1} y^{1} + \dots + {}^{n}C_{r} (-1)^{r} x^{n-r} y^{r} + \dots + {}^{n}C_{n} (-1)^{n} x^{0} y^{n} \dots (ii)$$

MATHS

(iii) Adding (i) & (ii), we get

$$(x + y)^{n} + (x - y)^{n} = 2[{}^{n}C_{0} x^{n} y^{0} + {}^{n}C_{2} x^{n-2} y^{2} + \dots]$$

Subtracting (ii) from (i), we get (iv)

$$(x + y)^{n} - (x - y)^{n} = 2[{}^{n}C_{1} x^{n-1} y^{1} + {}^{n}C_{3} x^{n-3} y^{3} + \dots]$$

PROPERTIES OF BINOMIAL COEFFICIENTS

$$(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + \dots + C_{n}x^{n} = \sum_{r=0}^{n} {}^{n}C_{r}r^{r}$$
; $n \in \mathbb{N}$ (i)

where $C_0, C_1, C_2, \dots, C_n$ are called **combinatorial (Binomial) coefficients**.

- The sum of all the Binomial coefficients is 2^n . (a)
- Put x = 1, in (i)

$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$

....(ii)

 $\sum_{r=0}^{n} {}^{n}C_{r} = 0$

⇒

 \Rightarrow

(b) Put x= -1 in (i)
we get
$$C_0 - C_1 + C_2 - C_3 \dots + C_n = 0$$

 $\Rightarrow \qquad \sum_{r=0}^{n} (-1)^{r n} C_r = 0 \dots (iii)$

The sum of the Binomial coefficients at odd position is equal to the sum of (c) the Binomial coefficients at even position and each is equal to 2^{n-1} . From (ii) & (iii),

$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

(d)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

(e)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(f)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} \cdot \frac{n-1}{r-1} {}^{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2)\dots(n-r+1)}{r(r-1)(r-2)\dots 1}$$

(g)
$${}^{n}C_{r} = \frac{r+1}{n+1} \cdot {}^{n+1}C_{r+1}$$

Ex.7 Prove that:
$${}^{25}C_{10} + {}^{24}C_{10} + \dots + {}^{10}C_{10} = {}^{26}C_{11}$$

MATHS

Sol. LHS

$${}^{10}C_{10} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$$

 \Rightarrow
 ${}^{11}C_{11} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$
 \Rightarrow
 ${}^{12}C_{11} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$
 \Rightarrow
 ${}^{13}C_{11} + {}^{13}C_{10} + \dots + {}^{25}C_{10}$
and so on.
 $RHS = {}^{26}C_{11}$

Alternative

LHS = coefficient of
$$x^{10}$$
 in $\{(1 + x)^{10} + (1 + x)^{11} + \dots (1 + x)^{25}\}$
 $\Rightarrow \qquad \text{coefficient of } x^{10} \text{ in} \left[(1 + x)^{10} \frac{\{1 + x\}^{16} - 1}{1 + x - 1} \right]$
 $\Rightarrow \qquad \text{coefficient of } x^{10} \text{ in} \frac{\left[(1 + x)^{26} - (1 + x)^{10} \right]}{x}$
 $\Rightarrow \qquad \text{coefficient of } x^{10} \text{ in } [(1 + x)^{26} - (1 + x)^{10}]$
 $= {}^{26}C_{11} - 0 = {}^{26}C_{11}$

Ex.8 Prove that :

(i)
$$C_1 + 2C_2 + 3C_3 + \dots + {}^{n}C_n = n \cdot 2^{n-1}$$

(ii) $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$
Sol. (i) L.H.S. $= \sum_{r=1}^{n} r \cdot {}^{n}C_r = \sum_{r=1}^{n} r \cdot \frac{n}{r} \cdot {}^{n-1}C_{r-1}$
 $\sum_{r=1}^{n} r \cdot {}^{n-1}C_{r-1} = n \cdot [{}^{n-1}C_0 + {}^{n-1}C_0 + \dots + {}^{n-1}C_{n-1}]$

$$= n \cdot 2^{n-1}$$

Aliter : (Using method of differentiation)

$$(1 + x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}$$
(A)

Differentiating (A),

we get
$$n(1 + x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \dots + n.C_nx^{n-1}$$

Put

 $\mathsf{C}_1 + 2\mathsf{C}_2 + 3\mathsf{C}_3 + \cdots \dots + \mathbf{n} \cdot \mathsf{C}_{\mathbf{n}} = \mathbf{n} \cdot 2^{\mathbf{n}-1}$

x = 1,

MATHS

(ii) L.H.S.

$$=\sum_{r=0}^{n} \frac{C_{r}}{r+1} = \frac{1}{n+1} \sum_{r=0}^{n} \frac{n+1}{r+1} {}^{n}C_{r}$$

$$= \frac{1}{n+1} \sum_{r=0}^{n} {}^{n+1}C_{r+1}$$

$$= \frac{1}{n+1} \left[{}^{n+1}C_{1} + {}^{n+1}C_{2} + \dots + {}^{n+1}C_{n+1} \right]$$

$$= \frac{1}{n+1} \left[{}^{2^{n+1}} - 1 \right]$$

Aliter : (Using method of integration) Integrating (A),

we get
$$\frac{(1+x)^{n+1}}{n+1} + C = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$

(where C is a constant)

x = 0,

x = −1,

 $C = -\frac{1}{-n+1}$

Put

we get,

$$\frac{(1+x)^{n+1}-1}{n+1} = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$
$$x = 1,$$

Put

we get	$C + \frac{C_1}{C_1}$	$+\frac{C_2}{L}$	<u> </u>	$\underline{2^{n+1}} - 1$
we get	2^{0}	3	n+1	n+1

Put

we get
$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots = \frac{1}{n+1}$$

Ex.9 Prove that
$$C_1 - C_3 + C_5 - \dots = 2^{\frac{n}{2}} \sin \frac{n\pi}{4}$$

Sol. Consider the expansion

$$(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n} \dots (i)$$

putting x = -i in (i)

we get
$$(1-i)^n = C_0 - C_1 i - C_2 + C_3 i + C_4 + \dots (-1)^n C_n i^n$$

Or
$$2^{\frac{n}{2}} \left[\cos\left(-\frac{n\pi}{4}\right) + i\sin\left(-\frac{n\pi}{4}\right) \right]$$
$$= (C_0 - C_2 + C_4 - \dots - i(C_1 - C_3 + C_5 - \dots -) \dots (ii)$$

Equating the imaginary part in (ii)

MATHS

we get
$$C_1 - C_3 + C_5 - \dots \dots = 2^{\frac{n}{2}} \sin \frac{n\pi}{4}$$

Ex.10 If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then prove that

$$\sum_{0 \le i < j \le n} (C_i + C_j)^2 = (n - 1)^{2n} C_n + 2^{2n}$$

Sol. L.H.S $\sum_{0 \le i < j \le n} (C_i + C_j)^2$ $= (C_0 + C_1)^2 + (C_0 + C_2)^2 + \dots + (C_0 + C_n)^2 + \dots$

$$= (C_{0} + C_{1})^{2} + (C_{0} + C_{2})^{2} + \dots + (C_{0} + C_{n})^{2} + (C_{1} + C_{2})^{2} + (C_{1} + C_{3})^{2} + \dots + (C_{1} + C_{n})^{2} + (C_{2} + C_{3})^{2} + (C_{2} + C_{4})^{2} + \dots + (C_{2} + C_{n})^{2} + \dots + (C_{n-1} + C_{n})^{2}$$

$$= n(C_{0}^{2} + C_{1}^{2} + C_{2}^{2} + \dots + C_{n}^{2}) + 2\sum_{0 \le i < j \le n} C_{i}C_{j}$$

$$= n^{2n}C_{n} + 2 \cdot \left\{ 2^{2n-1} - \frac{2n!}{2 \cdot n! n!} \right\}$$

$$n. {}^{2n}C_{n} + 2^{2n} - {}^{2n}C_{n}$$

$$= (n-1).{}^{2n}C_{n} + 2^{2n} = R.H.S$$