LIMITS AND DERIVATIVES

LIMITS OF TRIGONOMETRIC FUNCTIONS

Limits of trigonometric Functions

The following general facts about functions can be quite useful when calculating limits for certain trigonometric functions.

Theorem 1

Consider two real-valued functions, f and g, defined over the same domain, where $f(x) \le g(x)$ for all x within the domain of definition.

For some a, if both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$.

This is illustrated in figure:

Theorem 2 (Sandwich Theorem)

Let f, g and h be real functions such that $f(x) \le g(x) \le h(x)$ for all x in the common domain of definition. For some real member a,

if
$$\lim_{x \to a} f(x) = l = \lim_{x \to a} h(x),$$

then

$$\lim_{x\to a} g(x) = 1.$$

This is illustrated in figure:

MATHS

Here is a geometric demonstration of the following significant inequality involving trigonometric functions.

$$\cos x < \frac{\sin x}{x} < 1$$
 for $0 < |x| < \frac{\pi}{2}$...(i)

Proof: We are aware that sin (-x) and cos (-x) = cos x. Therefore, it is adequate to establish the inequality for $0 < x < \frac{\pi}{2}$. In the illustration, 0 is the centre of the unit circle, with angle AOC measuring x radians, and $0 < x < \frac{\pi}{2}$. Perpendicular line segments BA and CD are drawn to OA. Additionally, we connect AC.

Area of $\triangle OAC <$ Area of sector OAC < Area of $\triangle OAB$

i.e.
$$\frac{1}{2}$$
 OA.CD < $\frac{x}{2\pi}$. π .(OA)² < $\frac{1}{2}$ OA.AB

i.e. CD < x.OA < AB

From
$$\triangle OCD$$
 $\sin x = \frac{CD}{OA}$

(since OC = OA) and hence $CD = OA \sin x$

Also,
$$\tan x = \frac{AB}{OA}$$

and
$$AB = OA. \tan x$$

Thus, $OA \sin x < OA \cdot x < OA \cdot \tan x$

Since length OA is positive,

we have $\sin x < x < \tan x$

Since $0 < x < \frac{\pi}{2}$, sin x is positive and thus by dividing throughout by sin x,

we have
$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

Taking reciprocals throughout, we have $\cos x < \frac{\sin x}{x} < 1$, which complete the proof.

Now,
$$\lim_{x \to 0} \cos x < \lim_{x \to 0} \frac{\sin x}{x} < \lim_{x \to 0} 1$$

$$\Rightarrow \qquad \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Ex.1 Evaluate: $\lim_{x \to 2} \frac{x-3}{x+4}$

Sol.
$$\lim_{x \to 2} \frac{x-3}{x+4} = \frac{2-3}{2+4} = -\frac{1}{6}$$

Ex.2 Evaluate:
$$\lim_{x \to 2} \frac{x^5 - 32}{x^3 - 8}$$

Sol.
$$\lim_{x \to 2} \frac{x^5 - 32}{x^3 - 8} = \lim_{x \to 2} \left(\frac{x^5 - 32}{x - 2} \right) \div \left(\frac{x^3 - 8}{x - 2} \right)$$
$$= \lim_{x \to 2} \left(\frac{x^5 - 2^5}{x - 2} \right) \div \lim_{x \to 2} \left(\frac{x^3 - 2^3}{x - 2} \right)$$
$$= 5(2)^4 \div 3(2)^2 = \frac{20}{3}$$
$$\left[\text{As } \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1} \right]$$

Ex.3 Evaluate:
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

Sol. $\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$, we rationalize i.e. multiply and divide by $\left(\sqrt{1+x} + \sqrt{1-x}\right)$

$$= \lim_{x \to 0} \frac{(1+x) - (1-x)}{x[\sqrt{1+x} + \sqrt{1-x}]}$$

MATHS

$$= \lim_{x \to 0} \frac{2x}{x[\sqrt{1+x} + \sqrt{1-x}]}$$
$$= \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$
$$= \frac{2}{\sqrt{1+0} + \sqrt{1-0}}$$
$$= \frac{2}{1+1} = \frac{2}{2} = 1$$

Ex.4 If $\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80$ and $n \in I^+$, find n.

Sol.
$$\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80$$

 $n.2^{n-1} = 5.2^4$ \Rightarrow

Ex.5 Evaluate: $\lim_{x\to 0} \frac{\cos ax - \cos bx}{x^2}$.

 \Rightarrow

Sol.

$$\lim_{x\to 0} \frac{\cos ax - \cos bx}{x^2}$$

n = 5

$$=\lim_{x\to 0}\frac{2\sin\frac{ax+bx}{2}.\sin\frac{bx-ax}{2}}{x^2}$$

$$\lim_{x\to 0} 2 \cdot \frac{\sin\frac{(a+b)x}{2}}{\frac{(a+b)x}{2}} \times \frac{a+b}{2} \cdot \frac{\sin\frac{(b-a)x}{2}}{\frac{(b-a)x}{2}} \times \frac{(b-a)}{2}$$

$$=2\times\frac{a+b}{2}\times\frac{b-a}{2}=\frac{b^2-a^2}{2}$$

MATHS

Ex.6 Evaluate:
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$$
.

Sol.

$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$$

Put

$$x-\frac{\pi}{4}=t$$
 ,

as

$$x \rightarrow \frac{\pi}{4}, t \rightarrow 0$$

$$= \lim_{t \to 0} \frac{\sin\left(\frac{\pi}{4} + t\right) - \cos\left(\frac{\pi}{4} + t\right)}{t}$$

$$=\lim_{t\to 0}\frac{\sin\frac{\pi}{4}\cos t + \cos\frac{\pi}{4}\sin t - \cos\frac{\pi}{4}\cos t + \sin\frac{\pi}{4}\sin t}{t}$$

$$= \lim_{t \to 0} \frac{\frac{1}{\sqrt{2}} \cos t + \frac{1}{\sqrt{2}} \sin t - \frac{1}{\sqrt{2}} \cos t + \frac{1}{\sqrt{2}} \sin t}{t}$$

$$=\frac{2}{\sqrt{2}}\lim_{t\to 0}\frac{\sin t}{t}=\sqrt{2}\times 1=\sqrt{2}$$

5