INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

SECTION FORMULA

SECTION FORMULA

To find the coordinates of a point R which divides PQ internally in the ratio m : n, drop perpendicular from P, R and Q on the xy plane. Let the foot of perpendiculars on the xy plane be denoted as L, N and M.

- \cdot Δ PRS is similar to Δ RQT.
- *.*.. the corresponding sides are proportional.

Now,

....

 $QT = (QM - TM) = (QM - RN) = (z_2 - z)$

$$\frac{\mathrm{m}}{\mathrm{n}} = \frac{(\mathrm{z} - \mathrm{z}_1)}{(\mathrm{z}_2 - \mathrm{z})}$$

$$(mz_2 - mz) = nz - nz_1$$
$$z(m + n) = mz_2 + nz_1$$

$$z = \frac{(mz_2 + nz_1)}{(m+n)}$$

CLASS 11

MATHS

{given}

Similarly

$$y = \frac{(my_2 + ny_1)}{(m+n)}$$
, $x = \frac{(mx_2 + nx_1)}{(m+n)}$

... The coordinates of point R are

$$\left(\frac{\mathbf{m}\mathbf{x}_2 + \mathbf{n}\mathbf{x}_1}{\mathbf{m} + \mathbf{n}}, \ \frac{\mathbf{m}\mathbf{y}_2 + \mathbf{n}\mathbf{y}_1}{\mathbf{m} + \mathbf{n}}, \ \frac{\mathbf{m}\mathbf{z}_2 + \mathbf{n}\mathbf{z}_1}{\mathbf{m} + \mathbf{n}}\right)$$

Similarly if R divides PQ externally in the ratio of m : n, then the coordinates of R are

$$\left(\frac{mx_{2}-nx_{1}}{m-n}, \ \frac{my_{2}-ny_{1}}{m-n}, \ \frac{mz_{2}-nz_{1}}{m-n}\right)$$

Ex.1 Find the distance between the of points A(2, -1, 3) and B(-2, -1, 3).

Sol. Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

AB = $\sqrt{(2+2)^2 + (-1+1)^2 + (3-3)^2} = 4$ units

Ex.2 Show that the points (2, -3, 4), (-1, 2, 1) and $\left(0, \frac{1}{3}, 2\right)$ are collinear and find the

ratio in which the third point divides the line joining first two.

Sol. Let A denote the point (2, -3, 4) and B the point (-1, 2, 1)Let C divides the line joining A and B in the ratio of $\lambda : 1$

∴ co-ordinates of C are

	$\left(\frac{2-\lambda}{\lambda+1},\frac{-3+2\lambda}{\lambda+1},\frac{4+\lambda}{\lambda+1}\right) \equiv \left(0,\frac{1}{3},2\right)$
	$\frac{2-\lambda}{\lambda+1}=0$
\Rightarrow	$\lambda = 2$
and	$\frac{-3+2\lambda}{\lambda+1} = \frac{1}{3}$
\Rightarrow	$-9 + 6\lambda = \lambda + 1$
\Rightarrow	$5\lambda = 10$
\Rightarrow	$\lambda = 2$
Also	$\frac{4+\lambda}{\lambda+1}=2$
\Rightarrow	$4 + \lambda = 2\lambda + 2$

 \Rightarrow

 $\lambda = 2$

From each equation we get the value of λ as 2.

- ... The point A, C and B are collinear.
- \therefore The point C divides the line joining A and B internally in the ratio of 2 : 1.

Important formulas/ points

- Distance formula d= $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- Section formula $x = \frac{mx_2 + nx_1}{m+n}, y = \frac{my_2 + ny_1}{m+n}, z = \frac{mz_2 + nz_1}{m+n}$
- For internal division m: n is positive.
- For external division m: n is negative.