CONIC SECTIONS

INTRODUCTION OF CONIC SECTIONS

Introduction of Conic Sections -

When a plane cuts the cone other than the vertex, we have the following situations:

- (a) When $\beta = 90^\circ$, the section is a circle
- (b) When $\alpha < \beta < 90^\circ$, the section is an ellipse
- (c) When $\alpha = \beta$; the section is a parabola
- (d) When $0 \le \beta < \alpha$; the section is a hyperbola

Where β is the angle made by the plane with the vertical axis of the cone.

Circle:

Set of points in a plane equidistant from a fixed point. A circle with radius r and center (h, k) can be represented as $(x - h)^2 + (y - k)^2 = r^2$

Parabola:

Set of points in a plane that are equidistant from a fixed-line and point. A parabola with a > 0, focus at (a, 0), and directix x = -a can be represented as $y^2 = 4ax$

In parabola $y^2 = 4ax$, the length of the latus rectum is given by 4a.

Ellipse:

The sum of distances of a set of points in a plane from two fixed points is constant. An ellipse with foci on the x-axis can be represented as:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

In ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

The length of the latus rectum is given by $\frac{2b^2}{a}$

Hyperbola:

The difference of distances of set of points in a plane from two fixed points is constant. The hyperbola with foci on the x-axis can be represented as:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

In a Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

The length of latus rectum is given by $\frac{2b^2}{a}$

- **Ex 1.** Find an equation of the circle with center at (0, 0) and radius r.
- **Sol.** Given, Centre = (h, k) = (0, 0)

Radius = r

Therefore, the equation of the circle is $x^2 + y^2 = r^2$.

- **Ex 2.** Find the equation of the circle with center (-3, 2) and radius 4.
- **Sol.** Given, Centre = (h, k) = (-3, 2)

Radius = r = 4

Therefore, the equation of the required circle is

$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

 $(x + 3)^{2} + (y - 2)^{2} = 4^{2}$
 $(x + 3)^{2} + (y - 2)^{2} = 16$

Ex. 3 Find the center and the radius of the circle $x^2 + y^2 + 8x + 10y - 8 = 0$

Class 11

i.e.

i.e.

⇒

Sol. The given equation is

$$x^{2} + y^{2} + 8x + 10y - 8 = 0$$

 $(x^{2} + 8x) + (y^{2} + 10y) = 8$

By completing the squares within the parenthesis, we get

 $(x^{2} + 8x + 16) + (y^{2} + 10y + 25) = 8 + 16 + 25$ $(x + 4)^{2} + (y + 5)^{2} = 49$ $[x - (-4)]^{2} + [y - (-5)]^{2} = 7^{2}$

Comparing with the standard form, h = -4, k = -5 and r = 7

Therefore, the given circle has center at (-4, -5) and radius 7.

- **Ex 4.** Find the equation of the circle which passes through the points (2, -2), and (3, 4) and whose center lies on the line x + y = 2.
- **Sol.** Let the equation of the circle be $(x h)^2 + (y k)^2 = r^2$.

Given that the circle passes through the points (2, -2) and (3, 4).

Thus,	$(2 - h)^2 + (-2 - k)^2 = r^2$	(1)
-------	--------------------------------	-----

and $(3-h)^2 + (4-k)^2 = r^2$ (2)

Also, given that the center lies on the line x + y = 2.

h + k = 2(3)

Solving the equations (1), (2) and (3), we get

h = 0.7, k = 1.3 and $r^2 = 12.58$

Hence, the equation of the required circle is

$$(x - 0.7)^2 + (y - 1.3)^2 = 12.58$$

- **Ex 5.** Find the coordinates of the focus, axis, the equation of the directrix and latus rectum of the parabola $y^2 = 8x$.
- **Sol.** The given equation involves y², that means the axis of symmetry is along the x-axis.

The coefficient of x is positive so the parabola opens to the right.

Now by comparing the given equation with $y^2 = 4ax$, a = 2

Thus, the focus of the parabola is (2, 0) and the equation of the directrix of the parabola is x = -2 (see the figure)

Length of the latus rectum = $4a = 4 \times 2 = 8$

Ex. 6: Find the equation of the parabola with vertex at (0, 0) and focus at (0, 2).

Sol. Given,
$$Vertex = (0,0)$$

Focus = (0,2)

The focus lies on the y-axis.

Thus, the y-axis is the axis of the parabola.

Therefore, the equation of the parabola is of the form $x^2 = 4ay$.

$$\Rightarrow \qquad x^2 = 4(2)y$$

$$\Rightarrow$$
 $x^2 = 8y$

This is the required equation of parabola.

- **Ex. 7** Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9x^2 + 4y^2 = 36$.
- **Sol.** Given, $9x^2 + 4y^2 = 36$

The given equation of the ellipse can be written in standard form as:

$$\left(\frac{x^2}{4}\right) + \left(\frac{y^2}{9}\right) = 1$$

Class 11

Here, 9 is greater than 4.

Thus, the major axis is along the y-axis.

By comparing with	$\left(\frac{x^2}{b^2}\right) + \left(\frac{y^2}{a^2}\right) = 1,$
	$a^2 = 9$, $b^2 = 4$
⇒	a = 3, b = 2
	$c = \sqrt{a^2 - b^2} = \sqrt{9 - 4} = \sqrt{5}$
	$e = \frac{c}{a} = \frac{\sqrt{5}}{3}$

Therefore, the foci are $(0, \sqrt{5})$ and $(0, -\sqrt{5})$, vertices are (0, 3) and (0, -3), length of the major axis is 6 units, the length of the minor axis is 4 units and the eccentricity of the ellipse is $\frac{\sqrt{5}}{3}$.

- **Ex. 8** Find the equation of the hyperbola whose foci are $(0, \pm 12)$ and the length of the latus rectum is 36.
- **Sol.** Given foci are $(0, \pm 12)$

That means c = 12.

Length of the latus rectum $=\frac{2b^2}{a}=36$

or

	C	$a^2 = a^2 + b^2$	2 ²

Now,

i.e., $a^2 + 18a - 144 = 0$ \Rightarrow a = -24, 6

The value of a cannot be negative.

 $b^2 = 18a$

Therefore, a = 6 and so $b^2 = 108$.

Hence, the equation of the required hyperbola is $\left(\frac{y^2}{36}\right) - \left(\frac{x^2}{108}\right) = 1$ or $3y^2 - x^2 = 108$.