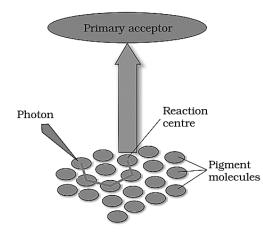
PHOTOSYNTHESIS IN HIGHER PLANTS WHAT IS LIGHT REACTION

Light reaction:

Light reaction occurs in grana of chloroplast.


WHAT IS LIGHT REACTION?

- Light reactions or the 'Photochemical' phase include

 (a) Light absorption
 (b) Water splitting
 (c) Oxygen release
 (d) The formation of high-energy chemical intermediates, ATP and NADPH.
- Several protein complexes are involved in the process. The pigments are organised into two discrete photochemical light harvesting complexes (LHC) within the Photosystem I (PS I) and Photosystem II (PS II). These are named in the sequence of their discovery, and not in the sequence in which they function during the light reaction.
- The LHC are made up of hundreds of pigment molecules bound to proteins. Each photosystem has all the pigments (except one molecule of chlorophyll a) forming a light harvesting system also called antennae. These pigments help to make photosynthesis more efficient by absorbing different wavelengths of light.
- The single chlorophyll a molecule forms the reaction centre. The reaction centre is different in both the photosystems. In PS I the reaction centre chlorophyll a has an absorption peak at 700 nm, hence is called P700, while in PS II it has absorption maxima at 680 nm, and is called P680.

CLASS XI

BIOLOGY

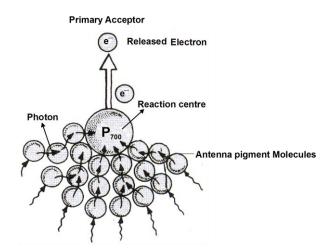


Fig. The light harvesting complex (Text Book)

Fig. Transfer of absorbed light energy from Antenna molecules to the core molecules by resonance.

Differences between PS-I & PS-II	Differences	between	PS-I	& PS- II
----------------------------------	-------------	---------	------	----------

S. No.	PS-I	PS-II
1	It is located on the non-appressed part of	It is located in the appressed part of
	grana and stroma thylakoids	grana
		thylakoids
2	P-700 is a reaction centre in PS-I	P-680 is reaction centre in PS-II
3	It is involved in both cyclic and non-cyclic	It is involved only in non-cyclic
	photophosphorylation.	photophos-
		phorylation.
4	During non-cyclic photophosphorylation.	It obtains electron through photolysis of
	It obtains electron from PS-II	water
5	Molecular oxygen is not evolved in this	Molecular oxygen is evolved due to
	system.	photolysis of water.