CLASS XI BIOLOGY

PHOTOSYNTHESIS IN HIGHER PLANTS PHOTORESPIRATION

PHOTORESPIRATION(PHOTOSYNTHETIC CARBON OXIDATION CYCLE - PCO CYCLE):

- It is also called PCO (photosynthetic carbon oxidation) cycle or C₂-cycle or glycolate metabolism.
- This cycle was discovered by Decker and Tio in tobacco (a C₃ plant)
- Photorespiration is a wasteful process because there is neither synthesis of sugars nor of ATP and NADPH. Rather it results in the release of CO₂ with the utilisation of ATP.
- Approximately 25% carbon is lost during this process.
- Photorespiration is a characteristic of C₃ plants.
- Three cell organelles are required to complete a turn of PCO cycle, namely; chloroplast, peroxisome and mitochondria.

Conditions favour photorespiration :

- (a) High light intensities: It is considered as main condition for photorespiration. This leads to following two conditions (b & c).
- (b) Higher concentration of O_2 and lower concentration of CO_2 inside mesophyll cells. (under such condition RuBisCO binds with O_2 and acts as an oxygenase enzyme)
- (c) High temperatures.

CLASS XI BIOLOGY

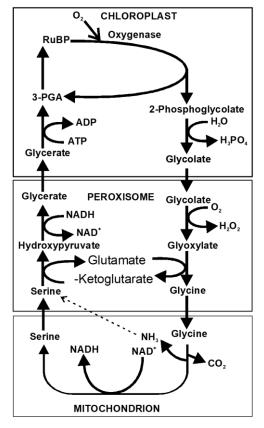


Fig:- C₂cycle

Warburg effect:

The Warburg's effect is the decrease in the rate of photosynthesis by high oxygen concentrations. Oxygen is a competitive inhibitor of the carbondioxide fixation by RuBisCO. Furthermore, oxygen promotes photorespiration which reduces photosynthetic output.

Bacterial Photosynthesis				Plant Photosynthesis		
(1)	Pigment containing structures	are	(1)	Pigment containing structures		
	chromatophores.			are thylakoids insode		
				chloroplasts		
(2)	Pigments are bacteriochlorophyll	and	(2)	Pigments are chlorophylls and		
	bacterioviridin			carotenoids		

CLASS XI BIOLOGY

(3)	Its anoxygenic because PS II is absent	(3)	Its oxygenic because PS II is
	whose photocenter is B-890 (Ps-II		present which can photolyse the
	absent)		H_2O .
(4)	any one pigment system is present whose	(4)	Two pigments system PS-I (P
	photocenter is B-890 (PS-II absent)		700) and PS-II (P 680) are
			present.
(5)	Action spectrum us infer red.	(5)	Action spectrum is blue-red
(6)	Duringn light reaction NAD+ being	(6)	During light reaction NADP+
	reduced to NADH		being reduced to NADPH.