AREAS OF PARALLELOGRAMS AND TRIANGLES

AREA OF TRIANGLE AND PARALLELOGRAM BETWEEN THE SAME BASE AND SAME PARALLEL LINE

AREA OF A TRIANGLE

Theorem-5:

Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

Given : Two triangles ABC and PCs on the same base BC and between the same parallel lines BC and AP.

To prove : $ar(\Delta ABC) = ar(\Delta PBC)$

Construction : Through B, draw BD || CA intersecting PA produced in D and through C, draw CQ || BP, intersecting line AP in Q.

Proof:

We have,

BD CA

[By construction]

And, BC || DA [Given]

Quad. BCAD is a parallelogram.

Similarly, Quad. BCQP is a parallelogram.

Now, parallelogram BCQP and BCAD are on the same base BC, and between the same parallels.

 $ar(\|^{gm}BCQP) = ar(\|^{gm}BCAD)$ (i)

We know that the diagonals of a parallelogram divides it into two triangles of equal area.

$$\therefore \qquad \operatorname{ar}(\Delta PBC = \frac{1}{2}\operatorname{ar}(\|^{gm}BCQP) \qquad \dots (ii)$$

And

 $\operatorname{ar}(\Delta ABC) = \frac{1}{2}\operatorname{ar}(\|^{gm}BCAD)$ (iii)

Now, $ar(||^{gm} BCQP) = ar(||^{gm} BCAD)$ [From (i)]

$$\Rightarrow \qquad \frac{1}{2} \operatorname{ar}(\|^{gm} \operatorname{BCAD}) = \frac{1}{2} \operatorname{ar}(\|^{gm} \operatorname{BCQP})$$

[Using (ii) and (iii)] Hence, $ar(\Delta ABC) = ar(\Delta PBC)$ Hence Proved.

Theorem-6:

The area of a trapezium is half the product of its height and the sum of the parallel sides.

Given : Trapezium ABCD in which AB \parallel DC, AL \perp DC, CN \perp AB and AL = CN = h (say)

$$AB = a, DC = b.$$

To prove : $ar(trap. ABCD) = \frac{1}{2}h \times (a + b).$

Construction : Join AC.

Proof:

AC is a diagonal of quad. ABCD.

ar(trap. ABCD) = ar(
$$\triangle$$
ABC) + ar(\triangle ACD) = $\frac{1}{2}h \times a + \frac{1}{2}h \times b = \frac{1}{2}h(a + b)$.

Hence Proved.

Theorem -7:

Triangles having equal areas and having one side of the triangle equal to corresponding side of the other, have their corresponding altitudes equal

Given : Two triangles ABC and PQR such that

(i) ar (
$$\triangle ABC$$
) = ar($\triangle PQR$) and

(ii) AB = PQ.

CN and RT and the altitude corresponding to AB and PQ respectively of the two triangles.

To prove : CR = RT.

Proof : In \triangle ABC, CN is the altitude corresponding to the side AB.

Ex.1 In figure, E is any point on median AD of a \triangle ABC. Show that ar(ABE) = ar(ACE).

Sol. Construction : From A draw AG \perp BC and from E draw EF \perp BC.

Proof:

$$ar(\Delta ABD) = \frac{BD \times AG}{2}$$

$$ar(\Delta ADC) = \frac{DC \times G}{2}$$
But, BD = DC [:.D is the mid-point of BC, AD being the median]
$$ar(\Delta ABD) = ar(\Delta ADC) \qquad ...(i)$$
Again, $ar(\Delta EBD) = \frac{BD \times EF}{2}$

$$ar(\Delta EDC) = \frac{DC \times EF}{2}$$
But, BD = DC
$$\therefore ar(\Delta EBD) = ar(\Delta EDC) \qquad ...(ii)$$
Subtracting (ii) from (i), we get
$$ar(\Delta ABD) - ar(\Delta EBD) = ar(\Delta ADC) - ar(\Delta EDC)$$

$$\Rightarrow ar(\Delta ABE) = ar(\Delta ACE).$$
Hence Proved.

Ex.2 Triangles ABC and DBC are on the same base BC; with A, D on opposite sides of the line BC, such that $ar(\Delta ABC) = ar(\Delta DBC)$. Show that BC bisects AD.

Sol. Construction : Draw AL \perp BC and DM \perp BC.

Proof:

 $ar(\Delta ABC) = ar(\Delta DBC)$ [Given]

$$\Rightarrow \frac{BC \times AL}{2} = \frac{BC \times DM}{2}$$

 \Rightarrow AL = DM(i)

Now in Δs OAL and OMD

AL = DM

 \Rightarrow

 \Rightarrow

[From (i)]

 $\Rightarrow \quad \angle ALO = \angle DMO \qquad [Each = 90^0]$

$\angle AOL = \angle MOD$	[Vert. opp. ∠s]

 $\angle OAL = \angle ODM$ [Third angles of the triangles]

 $\therefore \quad \Delta OAL \cong \Delta OMD \qquad [By ASA]$ $\therefore \quad OA = OD \qquad [By cpctc]$

i.e., BC bisects AD.

Hence Proved.

- **Ex.3** ABC is a triangle in which D is the mid-point of BC and E is the mid-point of AD. Prove that the area of $\triangle BED = \frac{1}{4}$ area of $\triangle ABC$.
- **Sol.** Given : A \triangle ABC in which D is the mid-point of BC and E is the mid-point of AD.

To prove: $ar(\Delta BED) = \frac{1}{4}ar(\Delta ABC).$

Proof:

::AD is a median of \triangle ABC.

 $ar(\Delta ABD) = ar(\Delta ADC) = \frac{1}{2}ar(\Delta ABC)$ (i)

[.:.Median of a triangle divides it into two triangles of equal area) = $\frac{1}{2}ar(\Delta ABC)$

Again,

 \therefore BE is a median of \triangle ABD,

 $\therefore \text{ ar}(\Delta \text{BEA}) = \text{ar}(\Delta \text{BED}) = \frac{1}{2}\text{ar}(\Delta \text{ABD})$

[.:.Median of a triangle divides it into two triangles of equal area]

And
$$\frac{1}{2}ar(\Delta ABD) = \frac{1}{2} \times \frac{1}{2}ar(\Delta ABC)$$
 [From (i)]
 \therefore $ar(\Delta BED) = \frac{1}{4}ar(\Delta ABC).$ Hence Prov

Ex.4 if the medians of a
$$\triangle$$
ABC intersect at G, show that ar(\triangle AGB) = ar(\triangle BGC) = $\frac{1}{3}$

Hence Proved.

ar($\triangle ABC$).

Sol. **Given :** A \triangle ABC its medians AD, BE and CF intersect at G.

To prove :
$$ar(\triangle AGB) = ar(\triangle AGC) = ar(\triangle BGC) = \frac{1}{3}ar(\triangle ABC).$$

Proof:

A median of triangle divides it into two triangles of equal area.

In \triangle ABC, AD is the median.

.... $ar(\Delta ABD) = ar(\Delta ACD)$...(i)

In \triangle GBC, GD is the median.

$$\therefore \qquad \operatorname{ar}(\Delta GBD) = \operatorname{ar}(\Delta GCD)$$

From (i) and (ii), we get

 $ar(\Delta ABD) - ar(\Delta GBD) = ar(\Delta ACD) - ar(\Delta GCD)$

 $a(\Delta AGB) = ar(\Delta AGC).$...

...(ii)

Similarly,

ar(
$$\triangle AGB$$
) =ar($\triangle AGC$) =ar($\triangle BGC$)(iii)
But, ar(ABC) = ar($\triangle AGB$) + ar($\triangle AGC$) + ar($\triangle BGC$)
= 3 ar($\triangle AGB$) [Using (iii)]
∴ ar($\triangle AGB$) = $\frac{1}{3}$ ar($\triangle ABC$).

Hence, $ar(\Delta AGB) = ar(\Delta AGC) = ar\Delta(BGC) = \frac{1}{3}ar(\Delta ABC)$. Hence proved.