QUADRILATERALS

THEOREM RELATED TO QUADRILATERAL

PARALLELOGRAM

A parallelogram is a quadrilateral in which both the pairs of opposite sides are parallel.

Theorem 1 :

A diagonal of a parallelogram divides the parallelogram into two congruent triangles.

Given : A parallelogram ABCD.

To Prove :

A diagonal divides the parallelogram into two congruent triangles

i.e., if diagonal AC is drawn then $\triangle ABC \cong \triangle CDA$

and if diagonal BD is drawn then $\triangle ABD \cong \triangle CDB$

Construction : Join A and C

Proof:

Sine, ABCD is a parallelogram

AB DC and AD BC

In $\triangle ABC$ and $\triangle CDA$

 $\angle BAC = \angle DCA$

 $\angle BCA = \angle DAC$

And, AC = AC

 $\therefore \quad \Delta ABC \cong \Delta CDA$

[By ASA]

[Alternate angles]

[Alternate angles]

[Common side]

Similarly, we can prove that

 $\triangle ABD \cong \triangle CDB$

Theorem 2:

In a parallelogram, opposite sides are equal.

A parallelogram ABCD in which AB $\|$ DC and AD $\|$ BC. Given :

To Prove : Opposite sides are equal i.e., AB = DC and AD = BC

Construction : Join A and C

Proof:

In $\triangle ABC$ and $\triangle CDA$

∠BAC	$C = \angle DCA$	[Alternate angles]	
∠BCA	$A = \angle DAC$	[Alternate angles]	
AC =	AC	[Common]	
	$\triangle ABC \cong \triangle CDA$	[By ASA]	
\Rightarrow	AB = DC and AD = BC	[By cpctc]	Hence Proved.

Theorem 3:

If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram

Given : A quadrilateral ABCD in which

To Prove: ABCD is a parallelogram i.e., AB \parallel DC and AD \parallel BC

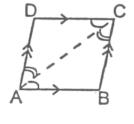
Construction : Join A and C

Proof:

In $\triangle ABC$ and $\triangle CDA$

AB = DC

[Given]



AD = BC		[Given]
And	AC = AC	[Common]
	$\triangle ABC \cong \triangle CDA$	[By SSS]
\Rightarrow	$\angle 1 = \angle 3$	[By cpctc]
And	$\angle 2 = \angle 4$	[By cpctc]

But these are alternate angles and whenever alternate angles are equal, the lines are parallel.

·.	AB DC and AD BC	
\Rightarrow	ABCD is a parallelogram.	Hence Proved.

Theorem 4 :

CLASS 9

In a parallelogram, opposite angles are equal.

Given : A parallelogram ABCD in which AB \parallel DC and AD \parallel BC.

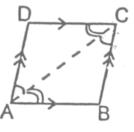
To Prove : Opposite angles are equal

i.e.
$$\angle A = \angle C$$
 and $\angle B = \angle D$

Construction : Draw diagonal AC

Proof : In $\triangle ABC$ and $\triangle CDA$:

∠BAC	$C = \angle DCA$			[Alternate angles]
∠BCA	$A = \angle DAC$			[Alternate angles]
AC = A	AC			[Common]
∴∆Al	BC≅∆CDA			[By ASA]
\Rightarrow	$\angle B = \angle D$			[By cpctc]
And,	$\angle BAD = \angle DCB$	i.e.,	$\angle A = \angle C$	



Similarly, we can prove that $\angle B = \angle D$

Hence Proved.

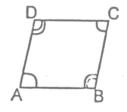
Theorem 5:

If in a quadrilateral, each pair of opposite angles is equal, then it is a parallelogram.

Given : A quadrilateral ABCD in which opposite angles are equal.

i.e., $\angle A = \angle C$ ad $\angle B = \angle D$

To prove : ABCD is a parallelogram i.e, AB || DC and AD || BC.



Proof : Since, the sum of the angles of quadrilateral is 360°

\Rightarrow	$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$	
\Rightarrow	$\angle A + \angle D + \angle A + \angle D = 360$	$[\angle A = \angle C \text{ and } \angle B = \angle D]$
\Rightarrow	$2\angle A = 2\angle D = 360^{\circ}$	
\Rightarrow	$\angle A + \angle D = 180^{0}$	[Co-interior angle]
\Rightarrow	AB DC	
Simila	arly,	
∠A +	$\angle B + \angle C + \angle D = 360^{\circ}$	
\Rightarrow	$\angle A + \angle B + \angle A + \angle B = 360^{\circ}$	$[\angle A = \angle C \text{ and } \angle B = \angle D]$
\Rightarrow	$2\angle A + 2\angle V = 360^{\circ}$	

 $\Rightarrow \quad \angle \mathbf{A} + \angle \mathbf{B} = 180^{\circ}$

[::This is sum of interior angles on the same side of transversal AB]

 \therefore AD || BCSo,AB || DC and AD || BC \Rightarrow ABCD is a parallelogram.Hence Proved.

Theorem 6 :

The diagonal of a parallelogram bisect each other.

Given : A parallelogram ABCD. Its diagonals AC and BD intersect each other at point O.

[Alternate angles]

[Alternate angles]

[By ASA]

To Prove : Diagonals AC and BD bisect each other i.e., OA = OC and OB = OD.

Proof:

In ΔAOB and ΔCOD

: AB DC and BD is a transversal line.

 $\therefore \angle ABO = \angle DCO$

- ∴ AB || DC and AC is a transversal line.
- $\therefore \angle BAO = \angle DCO$
- And, AB = DC
- $\Rightarrow \Delta AOB \cong \Delta COD$
- \Rightarrow OA = OC and OB = OD [By cpctc]

Hence Proved.

Theorem 7 :

If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

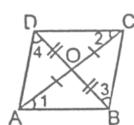
Given : A quadrilateral ABCD whose diagonals AC and BD bisect each other at point 0.

i.e., OA = OC and OB = OD

To prove : ABCD is a parallelogram

i.e., AB || DC and AD || BC.

Proof:



In ΔAOB and ΔCOD

MATHS

OA = OC		[Given]
0B =	OD	[Given}
And,	$\angle AOB = \angle COD$	[Vertically opposite angles]
\Rightarrow	$\triangle AOB \cong \triangle COD$	[By SAS]
\Rightarrow	$\angle 1 = \angle 2$	[By cpctc]

But these are alternate angles and whenever alternate angles are equal, the lines are parallel.

```
AB is parallel to DC i.e., AB || DC
...
```

Similarly,

CLASS 9

[By SAS] $\triangle AOD \cong \triangle COB$

 $\angle 3 = \angle 4$ \Rightarrow

But these are also alternate angles \Rightarrow AD || BC

AB \parallel DC and AD \parallel BC \Rightarrow ABCD is parallelogram.

Theorem 8:

A quadrilateral is a parallelogram, if a pair of opposite sides is equal and parallel.

Given : A quadrilateral ABCD in which AB \parallel DC and AB = DC.

To Prove : ABCD is a parallelogram

i.e., AB DC and AD BC.

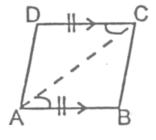
Construction : Join A and C.

Proof:

Since AB is parallel to DC and AC is transversal

 $\angle BAC = \angle DCA$

[Alternate angles]



Hence Proved.

AB = DC		[Given]
And	AC = AC	[Common side]
\Rightarrow	$\Delta BAC \cong \Delta DCA$	[By SAS]
\Rightarrow	$\angle BCA = \angle DAC$	[By cpctc]

But these are alternate angles and whenever alternate angles are equal, the lines are parallel.

\Rightarrow	ABCD is a parallelogram	Hence Proved.
Now,	AB 📗 DC (given) and AD 📗 BC	[Proved above]
\Rightarrow	AD BC	

REMARKS:

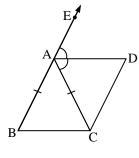
In order to prove that given quadrilateral is parallelogram, we have to prove that :

Opposite angles of the quadrilateral are equal, or (i)

(ii) Diagonals of the quadrilateral bisect each other, or

- A pair of opposite sides is parallel and is of equal length, or (iii)
- Opposite sides are equal. (iv)

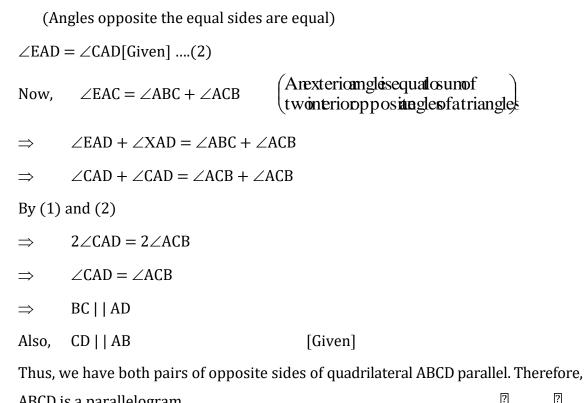
- Every diagonal divides the parallelogram into two congruent triangles. (v)
- In figure, AB = AC, $\angle EAD = \angle CAD$ and $CD \parallel AB$. Show that ABCD is a parallelogram. Ex.1



Sol.	In ∆ABC,	AB = AC	[Given]
	\Rightarrow	$\angle ABC = \angle ACB$	(1)

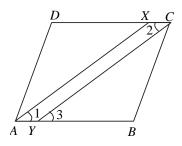
7

?



ABCD is a parallelogram.

Ex.2 ABCD is a parallelogram and line segments AX,CY are angle bisector of A and C respectively then show AX || CY.



Sol. Since opposite angles are equal in a parallelogram. Therefore, in parallelogram ABCD, we have $\angle A = \angle C$

$$\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$
$$\Rightarrow \angle 1 = \angle 2 \qquad \dots (i)$$

[:: AX and CY are bisectors of $\angle A$ and $\angle C$ respectively]

Now, AB || DC and the transversal CY intersects them.

 $\therefore \angle 2 = \angle 3$(ii) [:: Alternate interior angles are equal]

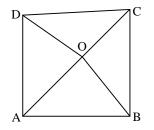
From (i) and (ii), we get

 $\angle 1 = \angle 3$

Thus, transversal AB intersects AX and YC at A and Y such that $\angle 1 = \angle 3$ i.e. corresponding angles are equal.

∴ AX || CY

In the adjoining figure, a point O is taken inside an equilateral quad. ABCD such that Ex.3 OB = OD. Show that A, O and C are in the same straight line.



Given a quad. ABCD in which AB = BC = CD = DA and 0 is a point within it such that Sol. OB = OD.

To prove $\angle AOB + \angle COB = 180^{\circ}$

Proof In $\triangle OAB$ and OAD, we have

AB = AD (given), OA = OA

(common) and OB = OD (given)

 $\therefore \Delta OAB \cong \Delta OAD$

 $\therefore \angle AOB = \angle AOD$(i) (c.p.c.t.)

Similarly, $\triangle OBC \cong \triangle ODC$

 $\therefore \angle COB = \angle COD$(ii)

Now, $\angle AOB + \angle COB + \angle COD + \angle AOD = 360^{\circ}$

 $[\angle at a point]$

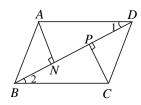
 $\Rightarrow 2(\angle AOB + \angle COB) = 360^{\circ}$

 $\Rightarrow \angle AOB + \angle COB = 180^{\circ}$

Ex.4 In figure AN and CP are perpendiculars to the diagonal BD of a parallelogram ABCD.Prove that :

(i) $\triangle ADN \cong \triangle CBP$

(ii) AN = CP



- **Sol.** Since ABCD is a parallelogram.
 - ∴ AD || BC

Now, AD || BC and transversal BD intersects them at B and D.

 $\therefore \ \angle 1 = \angle 2$

[:: Alternate interior angles are equal]

Now, in Δ s ADN and CBP, we have

 $\angle 1 = \angle 2$

 $\angle AND = \angle CPD$ and, AD = BC

[∵ Opposite sides of a ||^{gm} are equal]

So, by AAS criterion of congruence

 $\Delta ADN\cong \Delta CBP$

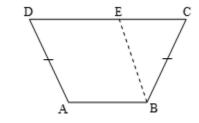
AN = CP

[:: Corresponding parts of congruent triangles are equal]

Ex.5 In figure, ABCD is a trapezium such that AB || CD and AD = BC.

BE || AD and BE meets BC at E. Show that

- (i) ABED is a parallelogram.
- (ii) $\angle A + \angle C = \angle B + \angle D = 180^{\circ}$.



Sol.	Here,	AB CD	(Given)
	\Rightarrow	AB DE	(1)
	Also,	BE AD (Given)	(2)
	From (1)	and (2),	
	ABED is a parallelogram		
	\Rightarrow	AD = BE	(3)
	Also,	AD = BC (Given)	(4)
	From (3) and (4),		
	BE = BC		
	\Rightarrow	$\angle BEC = \angle BCE$	(5)
	Also,	$\angle BAD = \angle BED$	
	(opposite	e angles of parallelogram ABI	ED)
	i.e.,	$\angle BED = \angle BAD$	(6)
	Now, $\angle BED + \angle BEC = 180^{\circ}$ (Linear pair of angles)		
	\Rightarrow	$\angle BAD + \angle BCE = 180^{\circ}$	
	By (5) an	d (6)	
	\Rightarrow	$\angle A + \angle C = 180^{\circ}$	

Similarly, $\angle B + \angle D = 180^{\circ}$