QUADRILATERALS

MID POINT THEOREM

THEOREM: 10 (MID-POINT THEOREM):

In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side and also half of it.

Given : In \triangle PQR, A and B are the mid-points of \overline{PQ} and \overline{PR} respectively.

To Prove : $\overline{AB} || \overline{QR}$ and $AB = \frac{1}{2} QR$

Construction : Draw \overline{RC} parallel to \overline{QA} to meet produced \overline{AB} at C.

Proof:

(i) In $\triangle ABP$ and $\triangle CBR$,

```
\anglePBA = \angleRBC (vertically opposite angles)
```

```
\angle PAB = \angle RCB (alternate angles and \overline{CR} \parallel \overline{PQ})
```

PB = BR (B is mid point of PR)

By AAS congruence property,

 $\triangle ABP \cong \triangle CBR$

- \therefore PA = CR and AB = BC (corresponding parts of congruent triangles)
- \Rightarrow AQ = CR (:: PA = AQ)

In quadrilateral ACRQ, AQ = CR and $\overline{AQ} ||\overline{CR}$

 \therefore ACRQ is a parallelogram.

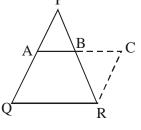
$$\therefore \qquad \overline{AC} \mid \mid \overline{QR} \Rightarrow \overline{AB} \mid \mid \overline{QR}$$

(ii) AC = QR (opposite sides of parallelogram)

$$\Rightarrow$$
 QR = AB + BC

$$\Rightarrow$$
 QR = 2AB (:: AB = BC)

$$\Rightarrow \qquad AB = \frac{1}{2} QR$$



CLASS 9

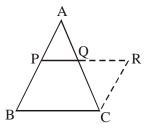
THEOREM : 11 (CONVERSE OF MID POINT THEOREM) :

The line drawn through the mid-point of one side of a triangle parallel to the another side, bisects the third side.

Given : A triangle ABC in which P is the mid-point of side AB and PQ is parallel to BC.

To prove : PQ bisects the third side AC i.e., AQ = QC.

Construction : Through C, draw CR parallel to BA, which meets PQ produced at point R.



Proof:

Proof :			
Since	e, PQ BC i.e., PR BC	[Given]	
and CR BA i.e., CR BP		[By construction]	
\therefore Opposite side of quadrilateral PBCR are parallel.			
\Rightarrow	PBCR is a parallelogram.		
\Rightarrow	BP = CR		
Also,	AP = PB	[As, P is mid-point of AB]	
<i>.</i> .	CR = AP		
AB CR and AC is transversal,			
\Rightarrow	$\angle PAQ = \angle RCQ$	(alternate interior angles)	
AB CR and PR is transversal,			
\Rightarrow	$\angle APQ = \angle CRQ$	(alternate interior angles)	
In $\triangle APQ$ and $\triangle CRQ$,			
AP = CR, \angle PAQ = \angle RCQ and \angle APQ = \angle CRQ			
\Rightarrow	$\Delta APQ \cong \Delta CRQ$	(By ASA congruency)	
\Rightarrow	AQ = CQ	(CPCT)	

CLASS 9

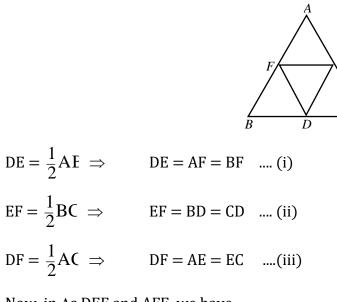
Ex.1 Prove that the four triangles formed by joining in pairs, the mid-points of three sides of a triangle, are concurrent to each other.

Given : A triangle ABC and D,E,F are the mid-points of sides BC, CA and AB respectively. Sol.

To Prove : \triangle AFE $\cong \triangle$ FBD $\cong \triangle$ EDC $\cong \triangle$ DEF.

Proof:

Since the segment joining the mid-points of the sides of a triangle is half of the third side. Therefore,



Now, in Δs DEF and AFE, we have

DE = AF[From (i)] DF = AE[From (ii)] [Common]

and, EF = FE

So, by SSS criterion of congruence,

 $\Delta \text{ DEF} \cong \Delta \text{ AFE}$

Similarly, \triangle DEF $\cong \triangle$ FBD and \triangle DEF $\cong \triangle$ EDC

Hence, $\triangle AFE \cong \triangle FBD \cong \triangle EDC \cong \triangle DEF$

- Let ABC be an isosceles triangle with AB = AC and let D,E,F be the mid-points of BC, Ex.2 CA and AB respectively. Show that AD \perp FE and AD is bisected by FE.
- Given : An isosceles triangle ABC with D, E and F as the mid-points of sides BC, CA Sol.

and AB respectively such that AB = AC. AD intersects FE at O.

To Prove : AD \perp FE and AD is bisected by FE.

Constructon : Join DE and DF.

Proof:

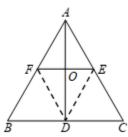
Since the segment joining the mid-points of two sides of a triangle is parallel to third side and is half of it. Therefore,

DE AB and DE = $\frac{1}{2}$ AB			
Also, DF AC and DF = $\frac{1}{2}$ AC			
But, $AB = AC$	[Given]		
$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC$			
\Rightarrow DE = DF	(i)		
Now, $DE = \frac{1}{2}AB \Rightarrow DE = AF$	(ii)		
and, $DF = \frac{1}{2}AC \Rightarrow DF = AE$	(iii)		
From (i), (ii) and (iii) we have			
DE = AE = AF = DF			
\Rightarrow DEAF is a rhombus.			

 \Rightarrow Diagonals AD and FE bisect each other at right angle.

AD \perp FE and AD is bisected by FE.

Ex.3 ABCD is a parallelogram. P is a point on AD such that $AP = \frac{1}{3}$ AD and Q is a point on BC such that $CQ = \frac{1}{3}$ BP. Prove that AQCP is a parallelogram.



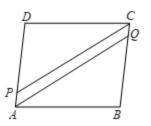
CLASS 9

Sol. ABCD is a parallelogram.

$$\Rightarrow$$
 AD = BC and AD || BC

$$\Rightarrow \frac{1}{3}AD = \frac{1}{3}BC \text{ and } AD \parallel BC$$

 \Rightarrow AP = CQ and AP || CQ



Thus, APCQ is a quadrilateral such that one pair of opposite side AP and CQ are parallel and equal.

Hence, APCQ is a parallelogram.