QUADRILATERALS

BASIC CONCEPT OF QUADRILATERALS

INTRODUCTION

A quadrilateral is a closed figure obtained by joining four points in a plane (with no three points collinear) in an order.

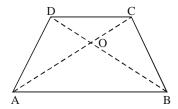
Since, 'quad' means 'four' and 'lateral' means 'sides', therefore 'quadrilateral' means 'a figure bounded by four sides'.

Every quadrilateral has:

- (i) Four vertices
- (ii) Four sides
- (iii) Four angles and
- (iv) Two diagonals.

The given figure shows a quadrilateral ABCD, which has

- (i) four vertices namely: A, B, C and D.
- (ii) four sides namely: AB, BC, CD and DA
- (iii) four angles namely : $\angle A$, $\angle B$, $\angle C$ and $\angle D$
- (iv) two diagonals, namely: AC and BD



A diagonal is a line segment obtained on joining the opposite vertices. Thus on joining opposite vertices A and C, we get diagonal AC. In the same way, on joining the opposite vertices B and D, we get the diagonal BD.

Adjacent sides:

Two sides of a quadrilateral having a common end point are called its adjacent or consecutive sides. (AB, BC), (BC, CD), (CD, DA) and (DA, AB) are four pairs of its adjacent sides.

Opposite sides:

Two sides of a quadrilateral having no common end point are called its opposite sides.

Adjacent Angles:

Two angles of a quadrilateral having a common arm are called its adjacent angles.

 $(\angle A, \angle B), (\angle B, \angle C), (\angle C, \angle D)$ and $(\angle D, \angle A)$ are four pairs of adjacent angles.

Opposite angles:

Two angles of a quadrilateral having no common arm are called its opposite angles.

 $(\angle A, \angle C)$ and $(\angle B, \angle D)$ are two pairs of opposite angles.

VARIOUS TYPES OF QUADRILATERALS

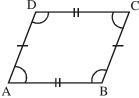
1 Parallelogram

In a quadrilateral, if both the pairs of opposite sides are parallel, then it is called a parallelogram.

Properties of parallelogram:

In the given figure,

- (i) AB = CD and BC = AD
- (ii) and . Hence, ABCD is a parallelogram.
- (iii) Each pair of opposite angles are equal, i.e. $\angle A = \angle C$ and $\angle B = \angle D$.



- (iv) The diagonals AC and BD bisect each other i.e. AO = OC and BO = OD.
- (v) Sum of each pair of adjacent angles is 180°, i.e.

$$\angle A + \angle B = \angle B + \angle C = \angle C + \angle D = \angle D + \angle A = 180^{\circ}$$
.

(vi) Each diagonal divides the parallelogram into two congruent triangles.

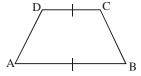
i.e.
$$\triangle ABC \cong \triangle CDA$$
 and $\triangle ABD \cong \triangle CDB$.



Note: In a parallelogram, diagonals need not be equal, but they bisect each other.

2 Trapezium

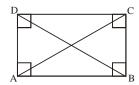
In a quadrilateral, if two opposite sides are parallel to each other, then it is called a trapezium.



In the given figure $\overline{AB} \mid\mid \overline{CD}$, hence ABCD is a trapezium.

3 Rectangle

In a parallelogram, if each angle is a right angle (90°), then it is called a rectangle.



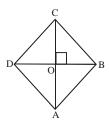
In the given figure, $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$, AB = CD and BC = AD Hence, ABCD is a rectangle.

Note : In a rectangle, the diagonals are equal, i.e., AC = BD.

4 Rhombus

In a parallelogram, if all the sides are equal, then it is called a rhombus.

In the given figure, AB = BC = CD = DA, hence ABCD is a rhombus.



Note:

- 1. In a rhombus, the diagonals need not be equal.
- 2. In a rhombus, the diagonals bisect each other at right angles, i.e. A0 = 0C, B0 = 0D and $\overline{AC} \perp \overline{DB}$.

3

CLASS 9

MATHS

5 Square

In a rhombus, if each angle is a right angle, then it is called a square.

OR

In a rectangle, if all the sides are equal, then it is called a square.

In the given figure, AB = BC = CD = DA and $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$.

Hence, ABCD is a square.

Note:

- 1. In a square, the diagonals bisect each other at right angles.
- 2. In a square, the diagonals are equal.

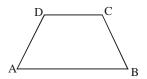
6 Isosceles trapezium

In a trapezium, if the non-parallel sides are equal, then

it is called an isosceles trapezium.

In the figure, $\overline{AB} \mid \mid \overline{CD}$ and BC = AD.

Hence, ABCD is an isosceles trapezium.

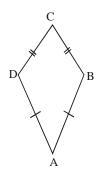


7 Kite

In a quadrilateral, if two pairs of adjacent sides are equal, then it is called a kite.

In the figure ABCD, AB = AD and BC = CD

Hence, ABCD is a kite.

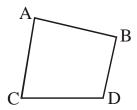


- **NOTE**:(i) Square, rectangle and rhombus are all parallelograms.
 - (ii) Kite and trapezium are not parallelograms.
 - (iii) A square is a rectangle.
 - (iv) A square is a rhombus.
 - (v) A parallelogram is a trapezium.

CONVEX QUADRILATERAL:

A convex quadrilateral is four sided polygon with all its interior angles less than 180°. In convex quadrilateral diagonals intersect inside the quadrilateral.

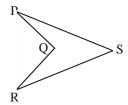
For example, quadrilateral ABCD is convex.



CONCAVE QUADRILATERAL:

A concave quadrilateral is four sided polygon with one interior angle more than 180°. In concave quadrilateral diagonals intersect outside the quadrilateral.

For example, quadrilateral PQRS is concave.



SUM OF THE ANGLE OF A QUADRILATERAL (ANGLE SUM PROPERTY OF QUADRILATERAL) :

Consider a quadrilateral ABCD. Join A and C to get the diagonal AC which divides the quadrilateral ABCD into two triangles ABC and ADC.

We know the sum of the angles of each triangle is 180° (2 right angles)

In
$$\triangle ABC$$
, $\angle CAB + \angle B + \angle BCA = 180^{\circ}$ (i)

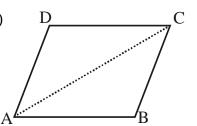
In
$$\triangle ADC$$
, $\angle DAC + \angle D + \angle DCA = 180^{\circ}$ (ii)

On adding (i) and (ii), we get

$$(\angle CAB + \angle DAC) + \angle B + \angle D + (\angle BCA + \angle DCA) = 180^{\circ} + 180^{\circ}$$

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

Thus, the sum of the angles of a quadrilateral is 360° (4-right angles)



- **Ex.1** The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.
- **Sol.** Given the ratio between the angles of the quadrilateral = 3:5:9:13 and 3+5+9+13=30

Since, the sum of the angles of the quadrilateral $= 360^{\circ}$

First angle of it =
$$\frac{3}{30} \times 360^0 = 36^0$$
,

Second angle =
$$\frac{5}{30} \times 360^0 = 60^0$$
,

Third angle =
$$\frac{9}{30} \times 360^0 = 108^0$$
,

And, Fourth angle =
$$\frac{13}{30} \times 360^0 = 156^0$$

 \therefore The angles of quadrilateral are 360⁰, 60⁰, 108⁰ and 156⁰.

ALTERNATE SOLUTION

Let the angles be 3x, 5x, 9x and 13.

$$\therefore$$
 3x + 5x + 9x + 13x = 360⁰

$$\Rightarrow$$
 30x = 360⁰ and x = $\frac{360}{30}$ = 12⁰

$$\therefore$$
 1st angle = 3x = 2 × 12⁰ = 360⁰

$$2^{\text{nd}}$$
 angle = $5x = \times 12^0 = 60^0$

$$3^{rd}$$
 angle = $9x = 9 \times 12^0 = 108^0$

And,
$$4^{th}$$
 angle = $13 \times 12^0 = 156^0$.

- $\textbf{Ex.2} \quad \text{Use the informations given in adjoining figure to calculate the value of } x.$
- **Sol.** Since, EAB is a straight line.

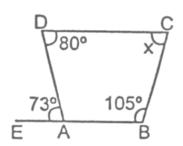
CLASS 9

MATHS

$$\therefore$$
 $\angle DAE + \angle DAB = 180^{\circ}$

$$\Rightarrow$$
 73⁰ + \angle DAB = 180⁰

i.e.,
$$\angle DAB = 180^{\circ} - 73^{\circ} = 107^{\circ}$$



Since, the sum of the angles of quadrilateral ABCD is 360°

$$107^0 + 105^0 + x + 80^0 = 360^0$$

$$\Rightarrow 292^0 + x = 360^0$$

$$\Rightarrow x = 360^{\circ} - 292^{\circ}$$

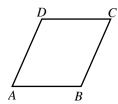
$$\Rightarrow x = 68^{\circ}$$

Ans.

Ex.3 In a parallelogram ABCD, prove that sum of any two consecutive angles is 180°.

Sol. Since ABCD is a parallelogram. Therefore,

AD || BC.



Now, AD $\mid\mid$ BC and transversal AB intersects them at A and B respectively.

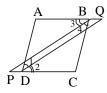
$$\therefore \angle A + \angle B = 180^{\circ}$$

 $[\because$ Sum of the interior angles on the same side of the transversal is $180^{o}]$

Similarly, we can prove that

$$\angle B + \angle C = 180^{\circ}$$
, $\angle C + \angle D = 180^{\circ}$ and $\angle D + \angle A = 180^{\circ}$

Ex.4 In figure bisectors of $\angle B$ and $\angle D$ of quadrilateral ABCD meet CD and AB produced at P and Q respectively. Prove that $\angle P + \angle Q = \frac{1}{2} (\angle ABC + \angle ADC)$



Sol. In $\triangle PBC$, we have

$$\therefore \angle P + \angle 4 + \angle C = 180^{\circ}$$

$$\Rightarrow \angle P + \frac{1}{2} \angle B + \angle C = 180^{\circ} \qquad \dots(i)$$

In $\triangle QAD$, we have $\angle Q + \angle A + \angle 1 = 180^{\circ}$

$$\Rightarrow \angle Q + \angle A + \frac{1}{2} \angle D = 180^{\circ} \qquad ...(ii)$$

Adding (i) and (ii), we get

$$\angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D = 180^{\circ} + 180^{\circ}$$

$$\Rightarrow \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D = 360^{\circ}$$

$$\Rightarrow \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} (\angle B + \angle D) = \angle A + \angle B + \angle C + \angle D$$

[: In a quadrilateral ABCD \angle A + \angle B + \angle C + \angle D = 360 $^{\circ}$]

$$\Rightarrow \angle P + \angle Q = \frac{1}{2}(\angle B + \angle D)$$

$$\Rightarrow \angle P + \angle Q = \frac{1}{2}(\angle ABC + \angle ADC)$$

Ex.5 In a parallelogram ABCD, $\angle D = 115^{\circ}$, determine the measure of $\angle A$ and $\angle B$.

Sol. Since the sum of any two consecutive angles of a parallelogram is 180°. Therefore,

$$\angle A + \angle D = 180^{\circ}$$
 and $\angle A + \angle B = 180^{\circ}$

Now, $\angle A + \angle D = 180^{\circ}$

$$\Rightarrow \angle A + 115^{\circ} = 180^{\circ}$$
 [:: $\angle D = 115^{\circ}$ (given)]

CLASS 9

$$\Rightarrow$$
 $\angle A = 65^{\circ}$ and $\angle A + \angle B = 180^{\circ}$

$$\Rightarrow$$
 $65^{\circ} + \angle B = 180^{\circ} \Rightarrow \angle B = 115^{\circ}$

Thus,
$$\angle A = 65^{\circ}$$
 and $\angle B = 115^{\circ}$