TRIANGLES

SOME PROPERTIES OF TRIANGLE

PROPERTIES OF AN ISOSCELES TRIANGLE:

An **isosceles** triangle is a triangle whose two sides are equal.

Property chart of Isosceles Triangle:

A triangle ABC is an isosceles triangle if and only if any one of the following conditions is satisfied:-

1. Sides

AB = AC

2. Angles

 $\angle B = \angle C$

3. Altitude

Altitude AM bisects the side BC

4. Altitude

Altitude AM bisects ∠BAC,

i.e. $\angle 1 = \angle 2$

CLASS 9

MATHS

5. **Altitudes**

Altitudes BR and CS of the triangle are equal, i.e. BR = CS.

6. **Median**

Median AD is perpendicular to BC, i.e. AD \perp BC

7. Median

Median AD bisects the \angle BAC. i.e. $\angle 1 = \angle 2$

8. Medians

Medians BE and CF are equal, i.e. BE = CF.

9. **Bisector**

Bisector AD of \angle BAC bisects the side BC, i.e. BD= CD

10. Bisector

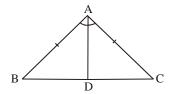
Bisector AD of \angle BAC is prependicular to the side BC i.e. AD \bot BC

11. Bisectors

Bisectors of $\angle B$ and $\angle C$ are equal in length i.e. BE = CF

CLASS 9 MATHS

Theorem 1: The angles opposite to equal sides of a triangle are equal.



Proof:

We are given an isosceles triangle ABC in which AB = AC.

We need to prove that $\angle B = \angle C$.

Let us draw the bisector of $\angle A$ and let D be the point of intersection of this bisector of

∠A and BC (see in figure)

In $\triangle BAD$ and $\triangle CAD$

AB = AC [Given]

 $\angle BAD = \angle CAD$ [By construction]

AD = AD [Common]

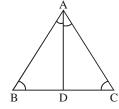
So, $\triangle BAD \cong \triangle CAD$ [By SAS rule]

So, $\angle ABD = \angle ACD$, since they are corresponding angles of congruent triangles.

So, $\angle B = \angle C$.

Theorem 2: If two angles of a triangle are equal, then the sides opposite to them are also equal.

Theorem: The sides opposite to equal angles of a triangle are equal.



Given : $\triangle ABC$, in which $\angle B = \angle C$

To Prove : AB = AC

Construction: Draw AD, the bisector of angle ∠BAC which meets BC at D.

Proof: In \triangle ABD and \triangle ACD,

 $\angle B = \angle C$ (Given)

AD = AD (Common side)

CLASS 9 MATHS

$$\angle BAD = \angle CAD$$

(By construction)

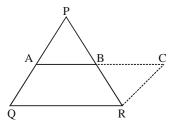
Therefore, $\triangle ABD \cong \triangle ACD$

(By AAS)

Hence corresponding sides, AB = AC

Theorem 3 (Mid-Point Theorem):

In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side and also half of it.



Given : In $\triangle PQR$, A and B are the mid-points of

 \overline{PQ} and \overline{PR} respectively.

To Prove: \overline{AB} || \overline{QR} and AB = $\frac{1}{2}$ QR

Construction: Draw \overline{RC} parallel to \overline{QA} to meet produced at \overline{AB} C.

Proof:

(i) In \triangle ABP and \triangle CBR,

 $\angle PBA = \angle RBC$

(vertically opposite angles)

 $\angle PAB = \angle RCB$

(alternate angles and $\overline{\it CR} \mid\mid \overline{\it PQ}$)

PB = BR

(B is mid point of PR)

By AAS congruence property,

 $\triangle ABP \cong \triangle CBR$

PA = CR and AB = BC

(corresponding parts of congruent triangles)

 \Rightarrow AQ = CR

(PQ = 2AQ)

In quadrilateral ACRQ, AQ = CR and $\overline{^{AQ}} \parallel \overline{^{CR}}$

∴ ACRQ is a parallelogram.

 $\therefore \overline{AC} \mid \mid \overline{QR}$

 $\Rightarrow \overline{AC} \mid \mid \overline{QR}$

(ii) AC = QR

(opposite sides of parallelogram)

 \Rightarrow QR = AB + BC

CLASS 9

MATHS

$$\Rightarrow$$
 QR = 2AB

(AB = BC)

$$\Rightarrow$$
 AB = $\frac{1}{2}$ QR

Ex.1 Find \angle BAC of an isosceles triangle in which AB = AC and \angle B = $\frac{1}{3}$ of right angle.

Sol.

$$\angle B = \angle C = \frac{1}{3}(90) = 30^{\circ}$$

$$\therefore \angle A + \angle B + \angle C = 180^{\circ} (\lambda.p.)$$

$$\angle A + 30^{\circ} + 30^{\circ} = 180^{\circ} \Rightarrow \angle A = 120^{\circ}.$$

Ex.2 In isosceles triangle DEF, DE = EF and \angle E = 70° then find other two angles.

Sol.

Let
$$\angle D = \angle F = x$$

$$\therefore \angle D + \angle E + \angle F = 180^{\circ}$$

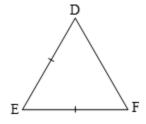
(angle sum property)

$$\Rightarrow$$
 x + 70° + x = 180°

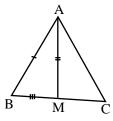
$$\Rightarrow 2x = 110^{\circ}$$

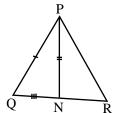
$$\Rightarrow x = 55^{\circ}$$

$$\Rightarrow \angle D = \angle F = 55^{\circ}$$
.



Ex.3 Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see figure). Show that:





- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$

Sol.(i)

In ΔABM & ΔPQN

$$AB = PQ$$
 (given)

$$AM = PN$$
 (given)

CLASS 9 MATHS

BM = QN
$$(\because BC = Q \therefore \frac{BC}{2} = \frac{QR}{2})$$

∴ By SSS, \triangle ABM $\cong \triangle$ PQN Proved.

(ii) In \triangle ABC & \triangle PQR

$$AB = PQ$$
 (given)

$$\angle B = \angle Q$$
 (c.p.c.t. of part (i))

$$BC = QR$$
 (given)

∴ By SAS, \triangle ABC \cong \triangle PQR Proved.

- **Ex.4** Prove that any point on the bisector of an angle is equidistant from the arms of the angle.
- **Sol.** Given: Two straight lines AB and CD intersect at O, P is a point on the bisector of

Construction: Draw MP \perp OB and NP \perp OD

In \triangle OMP and \triangle ONP,

$$\angle$$
MOP = \angle NOP [P lies on the bisector \angle BOD]

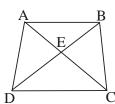
$$\angle OMP = \angle ONP$$
 [each is 90°]

$$OP = OP$$
 [Common]

$$\Delta OMP \cong \Delta ONP$$
 [by AAS congruence rule]

$$MP = NP$$
 [by CPCT]

Ex.5 In fig. AD = BC and BD = CA, Prove that ADB = BCA and DAB = CBA



Sol In triangles ABD & ABC,

We have:

$$AD = BC$$
 [given]

$$BD = CA$$
 [given]

$$AB = AB$$
 [common]

So, by SSS congruence criterion, we have :

 $\Delta ABD \cong \Delta BAC$

 \angle DAB = \angle CBA [Since, corresponding parts of congruent triangles are equal]

 $\angle ADB = \angle BCA$