TRIANGLES

INEQUALITIES IN TRIANGLE

SIDES AND ANGLES OF A TRIANGLE :

Theorem 4:

If two sides of a triangle are unequal, the larger side has

the greater angle opposite to it.

The converse of the above property is also true.

Deduction :

- 1. In any triangle, the greater angle has the larger side opposite to it.
- 2. In any triangle, the largest side is opposite to the greatest angle.
- 3. Angles opposite to equal sides are equal and vice versa. If $\angle A = \angle B$, then BC = CA If BC = CA, then $\angle A = \angle B$.
- 4. If the angles are in increasing or decreasing order, sides opposite to them also will be in the same order.
- (i) If $\angle A > \angle B > \angle C$, then BC > CA > AB.
- (ii) If $\angle A < \angle B < \angle C$, then BC < CA < AB.
- **Ex.1** In \triangle ABC, AB = 10cm and BC = 8 cm. Find the range of values that CA can take.
- **Sol:** In a triangle, the sum of two sides is greater than the third side and the difference of two sides is less than the the third side.

CA < AB + BC and CA > AB - BC

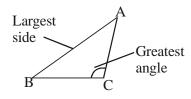
- \Rightarrow CA < 18 cm and CA > 2 cm
- $\Rightarrow 2 \text{ cm} < \text{CA} > 18 \text{ cm}.$

SUM AND DIFFERENCE OF TWO SIDES OF TRIANGLE :

Theorem 5

The sum of two sides of a triangle is always greater than the third side.

Thus, AB + AC > CB



1

CLASS 9

AC + BC > AB

BC + AB > AC

Deduction:

The difference of two sides is always less than the third side.

AB > AC - BC and BC - AC

AC > AB - BC and BC - AB

BC > AC - AB and AB - AC

1 Perpendicular Line Segment is the Shortest :

Of all the line segments that can be drawn to a given line *l* from a point O outside the line *l*,

the perpendicular line segment is the shortest. That is :

OP < OA, OB, OC, OD..... etc.

Proof:

Suppose OP \perp *l*.

Let OC be any line other than OP.

In $\triangle OPC$,

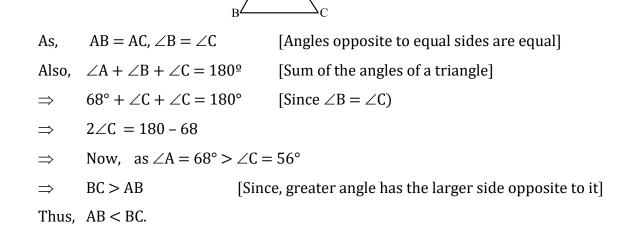
 $\angle OPC = 90^{\circ} > \angle OCP$

Therefore, OP < OC

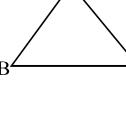
(The side opposite to greater angle is larger)

Ex.2 In the figure given below, AB = AC. Is AB > BC?

Sol:



2



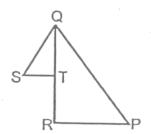
CLASS 9

Ex.3	In figure, $PQ = PR$, show that $PS > PQ$			P
Sol.	In ΔPQR			
	$\therefore PQ = PR$			s R
	$\Rightarrow \angle$	$PRQ = \angle PQR$	(i)	[Angles opposite to equal sides]
	In ΔPSQ , SQ is produced to R			
	∴ Ех	xt. ∠PQR > ∠PSQ	(ii)	
	$\angle PRQ > \angle PSQ$			[By eq. (i) and (ii)]
	$\Rightarrow \angle PRS > \angle PSR$ $\Rightarrow PS > PR$			
				[Sides opposite to greater angles is larger]
	But,	PR = PQ		
		PS > PQ		Hence Proved.
F 4				

- **Ex.4** In figure, T is a point on side QR of \triangle PQR and S is a point such that RT = ST. Prove that PQ + PR > QS
- **Sol.** In \triangle PQR we have
 - PQ + PR > QR
 - \Rightarrow PQ + PR > QT + TR
 - $\Rightarrow PQ + PR > QT + ST \qquad \therefore RT = ST$

 $In \Delta QST QT + ST > SQ$

 \therefore PQ + PR > SQ



CLASS 9

Ex.5 Find the relation between angles in figure.

Sol. \therefore yz > xz > xy

 $\therefore \angle x > \angle y > \angle z.$

(:: Angle opposite to longer side is greater)

