?

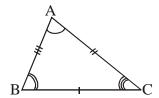
LINES AND ANGLES

TRIANGLE AND THEIR THEOREM

TRIANGLE: Triangle is a three sided closed polygon.

? ?

Six Elements of a Triangle : Three sides BC, CA and AB. Three Angles A, B and C.

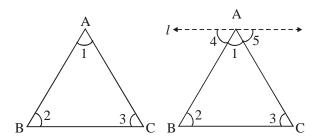


Relation Between the Angles of a Triangle:

Theorem 7:

The sum of the three angles of a triangles is 180° . This is called the angle sum property of triangle.

Given: A triangle ABC



To Prove:

$$\angle A + \angle B + \angle C = 180^{\circ} \text{ i.e. } \angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

Construction : Through A, draw a line /parallel to BC.

Proof:

Since / | BC

$$\angle 2 = \angle 4$$

[Alternate interior angles]

and
$$\angle 3 = \angle 5$$

[Alternate interior angles]

Adding (i) and (ii) we get:

CLASS 9 MATHS

$$\Rightarrow$$
 $\angle 2 + \angle 3 = \angle 4 + \angle 5$

?

 \Rightarrow $\angle 1 + \angle 2 + \angle 3 = \angle 1 + \angle 4 + \angle 5$ [Adding 1 to both the sides]

$$\Rightarrow$$
 $\angle 1 + \angle 2 + \angle 3 = \angle 4 + \angle 1 + \angle 5$

$$\Rightarrow$$
 $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

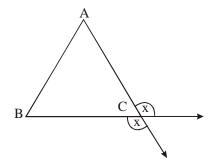
[sum of angles at a point on a line is 180°]

That is $\angle A + \angle B + \angle C = 180^{\circ}$

Thus, the sum of the three angles of a triangle is 180° .

Exterior Angle of a Triangle:

In fig. \angle ACB is called the interior angle C. Either of the angles marked x (they are equal. vertically opposite) is called the corresponding exterior angle.



Angles A and B are called the remote interior angles or interior opposite angles of the angle x.

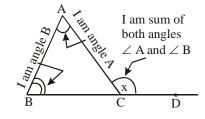
Theorem 8:

(Exterior Angle Theorem): If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior oppsoite angles.

Corollary:

$$\angle ACD > \angle A$$
 and $\angle ACD > \angle B$

Thus, an exterior angle of a triangle is greater than either of the interior oppsite angles.



CLASS 9 MATHS

Ex.1 One of the angles of a triangle is 65°. Find the remaining two angles, if their difference is 25°.

Sol. Let $\angle A = 65^{\circ}$ and two other angles be x and y.

Then we are given that $x - y = 25^{\circ}$ (1)

we know that : $\angle A + \angle B + \angle C = 180^{\circ}$

or
$$65^{\circ} + x + y = 180^{\circ}$$

$$x + y = 115^{\circ}$$

Adding (1) and (2), we get:

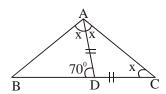
$$2x = 140^{\circ} \implies x = 70^{\circ}$$

From (2), we get,
$$y = 115^{\circ} - x = 115^{\circ} - 70^{\circ} = 45^{\circ}$$

Thus the remaining two angles of the triangle are 70° and 45° .

Ex.2 In \triangle ABC, AD is the bisector of \angle BAC and AD = DC. If \angle BDA=70 $^{\circ}$, find \angle A, \angle B and \angle C.

....(2)



Sol In \triangle DAC

DA = DC \Rightarrow \triangle DAC is an isosceles triangle.

$$\angle$$
 DAC = \angle DCA = x (say)

Also,
$$\angle$$
 ADB = \angle DAC + \angle DCA = x + x = 2x

[Exterior angle is equal to sum of the two opposite interior angles]

$$\Rightarrow$$
 $70^{\circ} = 2x$

$$\Rightarrow$$
 $x = 35^{\circ}$

Next, as AD is the bisector of \angle BAC,

$$\angle BAD = \angle DAC = x = 35^{\circ}$$

Thus,
$$\angle A = \angle BAD + \angle DAC$$
 $\Rightarrow 35^{\circ} + 35^{\circ} = 70^{\circ}$

$$\therefore$$
 $\angle A = 70^{\circ}, \ \angle C = 35^{\circ}$

and
$$\angle B = 180^{\circ} - \angle A - \angle C$$
 $\Rightarrow 180^{\circ} - 70^{\circ} - 35^{\circ} = 75^{\circ}$

- **Ex.3** In figure, TQ and TR are the bisectors of $\angle Q$ and $\angle R$ respectively. If $\angle QPR = 80^\circ$ and $\angle PRT = 30^\circ$, determine $\angle TQR$ and $\angle QTR$.
- **Sol.** Since the bisectors of $\angle Q$ and $\angle R$ meet at T.

$$\therefore$$
 $\angle QTR = 90^{\circ} + \angle QPR$

$$\Rightarrow$$
 $\angle QTR = 90^{\circ} + (80^{\circ})$

$$\Rightarrow$$
 $\angle QTR = 90^{\circ} + 40^{\circ} = 130^{\circ}$

In Δ QTR, we have

$$\angle TQR + \angle \Theta TR + \angle TRQ = 180^{\circ}$$

$$\Rightarrow$$
 TQR + 130° + 30° = 180° [$\Theta \angle TRQ = \angle PRT = 30°$]

$$\Rightarrow$$
 $\angle TQR = 20^{\circ}$

Thus, $\angle TQR = 20^{\circ}$ and $\angle QTR = 130^{\circ}$.

- **Ex. 4** In figure , If QT \perp PR, \angle TQR = 40° and \angle SPR = 30°, find x and y.
- **Sol.** In ΔTQR

$$\angle TQR + \angle QTR + \angle TRQ = 180^{\circ}$$

$$\Rightarrow$$
 $40^{\circ} + 90^{\circ} + \angle TRQ = 180^{\circ}$

$$\Rightarrow$$
 $\angle TRQ = 180^{\circ} - 130^{\circ} = 50^{\circ}$

$$\Rightarrow$$
 $x = 50^{\circ}$

In ΔPSR , using exterior angle property, we have

$$\angle PSQ = \angle PRS + \angle RPS$$

$$\Rightarrow$$
 $y = x + 30^{\circ}$

$$\Rightarrow \qquad y = 50^{\underline{o}} + 30^{\underline{o}} = 80^{\underline{o}}.$$

- **Ex. 5** The side BC of a \triangle ABC is produced, such that D is on ray BC. The bisector of \angle A meets BC in L as shown in figure. Prove that \angle ABC + \angle ACD = $2\angle$ ALC.
- **Sol.** In \triangle ABC, we have

ext.
$$\angle ACD = \angle B + \angle A$$

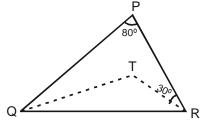
$$\Rightarrow$$
 ext. $\angle ACD = \angle B + 2\angle 1$

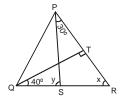
...(i)

[: AL is the bisector of $\angle A$: $\angle A = 2\angle 1$]

$$\Rightarrow$$
 $\angle ACD = \angle B + 2\angle 1$

In $\triangle ABL$, we have





ext.
$$\angle ALC = \angle B + \angle BAL$$

$$\Rightarrow$$
 ext. $\angle ALC = \angle B + \angle 1$

$$\Rightarrow$$
 2 \angle ALC = 2 \angle B + 2 \angle 1

...(ii) [Multiplying both sides by 2]

Subtracting (i) from (ii), we get

$$2\angle ALC - \angle ACD = \angle B$$

$$\Rightarrow$$
 $\angle ACD + \angle B = 2 \angle ALC$

$$\Rightarrow$$
 $\angle ACD + \angle ABC = 2 \angle ALC$.