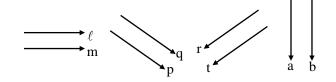
LINES AND ANGLES

PARALLEL LINE, TRANSVERSAL LINE AND THEIR THEOREM

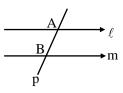
Parallel lines:

The lines which are in same plane and do not intersect each other any where, i.e. distance between parallel lines is same anywhere



Transversal line :

A line which intersect two or more given lines at distinct points, is called a transversal of the given lines.



Here $\lambda \parallel m$ and p is transversal line.

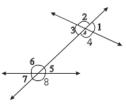
Part of transversal which is between the two lines is called intercept (AB).

Angles made by a transversal on two parallel lines :

Transversal:

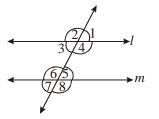
A transversal is a line that intersects two or more lines at different points.

A transversal cutting two lines forms some angles that are given special names.



CLASS 9

- (i) Interior Angles : $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$
- (ii) Exterior Angles : $\angle 1$, $\angle 2$, $\angle 7$ and $\angle 8$
- (iii) Pairs of Corresponding Angles : $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$
- (iv) Pairs of Alternate Interior Angles : $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$
- (v) Pairs of Alternate Exterior Angles : $\angle 1$ and $\angle 7$, $\angle 2$ and $\angle 8$
- (vi) Consecutive Interior Angles : $\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$.
- (vii) Pair of co-interior angles : $\angle 4 \& \angle 5, \angle 3 \& \angle 6$.
- (viii) Pair of co-exterior angles : $\angle 1 \& \angle 8, \angle 2 \& \angle 7$.



Axiom : (Corresponding Angles Axiom)

If a transversal intersects two parallel lines, then each pair of corresponding angles are equal. That is, in Fig.

 $\angle 1 = \angle 5$, $\angle 2 = \angle 6$, $\angle 3 = \angle 7$ and $\angle 4 = \angle 8$

Axiom :

If a transversal intersects two lines such that a pair of corresponding angles is equal, then the two lines are parallel to each other.

In Fig. if $\angle 1 = \angle 5$ or $\angle 2 = \angle 6$ or $\angle 3 = \angle 7$ and $\angle 4 = \angle 8$, then lines *l* and *m* are parallel.

Theorem 2 :

If a transversal intersects two parallel lines, then each pair of alternate interior angles is equal. i.e., if $I \mid m, \angle 3 = \angle 5$ and $\angle 4 = \angle 6$.

Theorem 3:

If a transversal intersects two lines in such a way that a pair of alternate exterior angles is equal, then the lines are parallel. i.e., if $\angle 1 = \angle 7$ and $\angle 2 = \angle 8 \implies l \mid m$.

CLASS 9

Theorem 4:

If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary. i.e., if $\angle 4 + \angle 5 = 180^{\circ}$ and $\angle 3 + \angle 6 = 180^{\circ} \Rightarrow I$ | m.

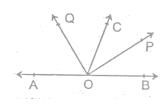
Theorem 5 :

If a transversal intersects two lines in such a way that a pair of exterior angles on the same side of the transversal is supplementary, then the lines are parallel. i.e., if $\angle 1 + \angle 8 = 180^{\circ}$ and $\angle 2 + \angle 7 = 180^{\circ} \Rightarrow I \mid m$.

Important Facts to Remember :

- (i) If a ray stands on line, then the sum of the adjacent angles so formed is 180° .
- (ii) If the sum of two adjacent angles is 180⁰, then their non common arms are two apposite rays.
- (iii) The sum of all the angles round a point is equal to 360°
- (iv) If two lines intersect, then the vertically opposite angles are equal.
- (v) If a transversal interests two parallel lines then the corresponding angles are equal, each pair of alternate interior angles are equal and each pair of consecutive interior angles are supplementary.
- (vi) if a transversal intersects two lines in such a way that a pair of alternet interior angles are equal, then the two lines are parallel.
- (vii) If a transversal intersects two lines in such a way that a pair of consecutive interior angles are supplementary, then the two lines are parallel.
- (viii) If two parallel lines are intersected by a transversal, the bisectors of any pair of alternate interior angles are parallel and the bisectors of an two corresponding angles are also parallel.

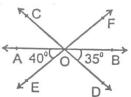
- (ix) If a line is perpendicular to one or two given parallel, lines, then it is also perpendicular to the other line.
- (x) Two angles which have their arms parallel are either equal or supplementary.
- (xi) Two angles whose arms are perpendicular are either equal or supplementary.
- **Ex.1** In figure, OP and OQ bisects \angle BOC and \angle AOC respectively. Prove that \angle POQ = 90⁰.



- **Sol.** \therefore OP bisects \angle BOC
 - $\therefore \angle POC = \frac{1}{2} \angle BOC \qquad \dots (i)$

Also OQ bisects ∠AOC

- $\therefore \angle COQ = \frac{1}{2} \angle AOC \qquad ...(ii)$
- ∴ OC stands on AB
- $\therefore \ \angle AOC + \angle BOC = 180^{0}$ [Linear pair]
- $\Rightarrow \frac{1}{2} \angle AOC + \frac{1}{2} \angle BOC = \frac{1}{2} \times 180^{0}$ $\Rightarrow \angle COQ + \angle POC = 90^{0}$ $\Rightarrow \angle POQ = 90^{0}$ [Using (i) & (ii)] (By angle sum property]
- **Ex.2** In figure, lines AB, CD and EF intersect at O. Find the measures of $\angle AOC$, $\angle DOE$ and $\angle BOF$

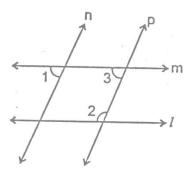


CLASS 9

MATHS



Ex.3 In figure if I || m , n || p and $\angle 1 = 85^0$ find $\angle 2$



Sol. \therefore n || p and m is transversal

 $\therefore \ \angle 1 = \angle 3 = 85^{\circ}$

Also m I & p is transversal

 $\therefore \ \angle 2 + \angle 3 = 180^{0}$

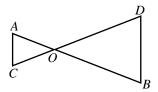
[Corresponding angles]

[::Consecutive interior angles]

- $\Rightarrow \angle 2 + 85^0 = 180^0$
- $\Rightarrow \angle 2 + 180^0 85^0$

 $\Rightarrow \angle 2 = 95^0$ Ans.

Ex.4 In figure given that $\angle AOC = \angle ACO$ and $\angle BOD = \angle BDO$. Prove that AC || DB.



Sol. We have,

 $\angle AOC = \angle ACO \text{ and } \angle BOD = \angle BDO$

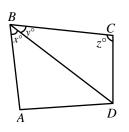
But $\angle AOC = \angle BOD$ [Vertically opp. $\angle s$]

 $\therefore \ \angle ACO = \angle BOD \text{ and } \angle BOD = \angle BDO$

 $\Rightarrow \angle ACO = \angle BDO$

Thus, AC and BD are two lines intersected by transversal CD such that $\angle ACO = \angle BDO$ i.e. alternate angles are equal. Therefore, AC || DB.

Ex.5 In figure AB || DC if $x = \frac{4}{3}y$ and $y = \frac{3}{8}z$, find the values of x, y and z.



Sol. Since AB || DC and transversal BD intersects them at B and D respectively. Therefore,

 $\angle ABD = \angle CDB \qquad \Rightarrow \angle CDB = x^{o}$

In \triangle BCD, we have

 $y^{\underline{o}} + z^{\underline{o}} + x^{\underline{o}} = 180^{\underline{o}}$

MATHS

$$\Rightarrow \frac{3}{8}z^{\circ} + z^{\circ} + \frac{4}{3} \times \frac{3}{8}z^{\circ} = 180$$
$$\Rightarrow \frac{3}{8}z^{\circ} + z^{\circ} + \frac{1}{2}z^{\circ} = 180$$
$$\Rightarrow \frac{15}{8}z^{\circ} = 180^{\circ}$$
$$[\because x = \frac{4}{3}y \text{ and } y = \frac{3}{8}z$$
$$\therefore x = \frac{4}{3} \times \frac{3}{8}z = \frac{z}{2}]$$
$$\Rightarrow z^{\circ} = 180^{\circ} \times \frac{8}{15} = 96^{\circ}$$
$$\text{Now, } y = \frac{3}{8}z \Rightarrow y = \frac{3}{8} \times 96^{\circ} = 36^{\circ}$$
$$\text{and} \quad x = \frac{4}{3}y \Rightarrow x = \frac{4}{3} \times 36^{\circ} = 48$$