## **COORDINATE GEOMETRY**

## **AREA OF TRIANGLE**

## **AREA OF A TRIANGLE :**

Let ABC be any triangle whose vertices are A (x<sub>1</sub>, y<sub>1</sub>), B (x<sub>2</sub>, y<sub>2</sub>) and C (x<sub>3</sub>, y<sub>3</sub>). Draw BL,

AM and CN perpendiculars from B, A and C respectively on the x-axis. ABLM, AMNC and BLNC are all trapeziums.

Area of DABC = Area of trapezium ABLM + Area of trapezium AMNC – Area of trapezium BLNC

We know that, Area of trapezium =  $\frac{1}{2}$  × (sum of parallel sides) × (distance between them)



Area of 
$$\triangle ABC = \frac{1}{2} (BL + AM) (LM) + \frac{1}{2} (AM + CN) (MN) - \frac{1}{2} (BL + CN) (LN)$$
  
$$= \frac{1}{2} (y_2 + y_1) (x_1 - x_2) + \frac{1}{2} (y_1 + y_3) (x_3 - x_1) - \frac{1}{2} (y_2 + y_3) (x_3 - x_2)$$
$$= \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$$

**Ex.1:** The vertices of  $\triangle$  ABC are (-2, 1), (5, 4) and (2, - 3) respectively. Find the area of triangle.

Sol:

A (-2, 1), B (5, 4) and C (2, -3) be the vertices of triangle. So,  $x_1 = -2$ ,  $y_1 = 1$ ;  $x_2 = 5$ ,  $y_2 = 4$ ;  $x_3 = 2$ ,  $y_3 = -3$ 

Area of  $\triangle$  ABC =  $\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$ 

$$\frac{1}{2} | [(-2)(4+3) + (5)(-3-1) + 2(1-4)] |$$
  
$$\frac{1}{2} | [-14 + (-20) + (-6)] |$$
  
$$\frac{1}{2} | -40 |$$

= 20 Sq. unit.

**Ex.2:** Find the area of a triangle whose vertices are A(3, 2), B (11, 8) and C(8, 12).

Sol. Let 
$$A = (x_1, y_1) = (3, 2), B = (x_2, y_2) = (11, 8) \text{ and } C = (x_3, y_3) = (8, 12) \text{ be the}$$
  
given points. Then,  
Area of  $\triangle ABC$   
 $= \frac{1}{2} |\{x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)\}|$   
 $\Rightarrow$  Area of  $\triangle ABC$   
 $= \frac{1}{2} |\{3(8 - 12) + 11(12 - 2) + 8(2 - 8)\}|$   
 $\Rightarrow$  Area of  $\triangle ABC$   
 $= \frac{1}{2} |(-12 + 110 - 48)| = 25 \text{ sq. units}$ 

Ex.3: Prove that the area of triangle whose vertices are (t, t - 2), (t + 2, t + 2) and (t + 3, t) is independent of t.

**Sol.** Let 
$$A = (x_1, y_1) = (t, t - 2)$$
,  $B(x_2, y_2) = (t + 2, t + 2)$  and  $C = (x_3, y_3) =$ 

(t + 3, t) be the vertices of the given triangle. Then, Area of  $\triangle ABC = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$ Area of  $\triangle ABC = \frac{1}{2} |\{t(t + 2 - t) + (t + 2) (t - t + 2) + (t + 3) (t - 2 - t - 2)\}|$ Area of  $\triangle ABC = \frac{1}{2} |\{2t + 2t + 1 - 4t - 12\}| = |-4|$ = 4 sq. untis Clearly, area of  $\triangle ABC$  is independent of t.

**Ex.4:** Find the area of the triangle formed by joining the mid-point of the sides of the triangle whose vertices are (0, -1), (2, 1) and (0, 3). Find the ratio of area of the triangle formed to the area of the given triangle.

## CLASS 9

Sol. Let A (0, -1), B(2, 1) and C(0, 3) be the vertices of  $\triangle ABC$ . Let D, E, F be the midpoints of sides BC, CA and AB respectively. Then, the coordinates of D, E and F are (1, 2), (0, 1) and (1, 0) respectively. Now, Area of  $\triangle ABC = \frac{1}{2} | x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) |$ Area of  $\triangle ABC = \frac{1}{2} | 0(1 - 3) + 2 (3 - (-1) + 0(0 - 1)) |$ Area of  $\triangle ABC = \frac{1}{2} | 0 + 8 + 0 | = 4$  sq. units Area of  $\triangle DEF = \frac{1}{2} | x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) |$ Area of  $\triangle DEF = \frac{1}{2} | 1 (1 - 0) + 0 (0 - 2) + 1 (2 - 1) |$ Area of  $\triangle DEF = \frac{1}{2} | 1 + 1 | = 1$  sq. units Area of  $\triangle DEF = \frac{1}{2} | 1 + 1 | = 1$  sq. units