POLYNOMIALS

FACTOR THEOREM

FACTOR THEOREM :

Let p(x) be a polynomial of degree n³ 1 and let a be any real number.

(i) If p(a) = 0, then (x - a) is a factor of p(x).

(ii) If (x - a) is a factor of p(x) then p(a) = 0

Proof:

By the Remainder Theorem, p(x) = (x - a) q(x) + p(a).

(i) If p(a) = 0, then p(x) = (x - a) q(x), which shows that x - a is a factor of p(x).

(ii) Since x – a is a factor of p(x), p(x) = (x – a) g(x) for same polynomial g(x). In this case,

p(a) = (a - a) g(a) = 0.

NOTE :

(i) If ax – b is a factor of p(x) then $P(\frac{b}{a}) = 0$

- (ii) If ax + b is a factor of p(x) then $p(\frac{-b}{a}) = 0$
- (iii) (x a) is a factor of $(x^n a^n)$ where "n" is any positive integer.
- (iv) (x + a) is a factor of $(x^n + a^n)$ where "n" is an odd positive integer.
- (v) (x + a) is a factor of $(x^n a^n)$ where "n" is positive even integer.
- (vi) $(x^n + a^n)$ is not divisible by (x + a) when "n" is even integer.
- (vii) $(x^n + a^n)$ is not divisible by (x a) for any integer "n"
- (viii) If (x 1) is a factor of polynomial of degree 'n' then the condition is sum of the coefficients is zero.
- (ix) If (x + 1) is a factor of polynomial of degree 'n' then the condition is the sum of the coefficients of even terms is equal to the sum of the coefficients of odd terms.
- **Ex.1:** Use factor theorem to verify that (x + a) is a factor of $(x^n + a^n)$ for any odd positive integer n.

 $p(x) = x^n + a^n$ Sol: $p(-a) = (-a)^n + a^n$ for any odd positive integer n, $(-a)^n = -a^n$ $p(-a) = -a^{n} + a^{n}$ therefore. p(-a) = 0.yes, (x + a) is a factor of $x^n + a^n$ for any odd positive integer n. Show that (x-3) is a factor of the polynomial $f(x) = x^3 + x^2 - 17x + 15$. Ex.2: By the factor theorem, (x-3) will be a factor of f(x) if f(3) = 0Sol: Now. $f(x) = x^3 + x^2 - 17x + 15$ $f(3) = (3^3 + 3^2 - 17 \times 3 + 15) = (27 + 9 - 51 + 15) = 0$ Hence (x-3) is a factor of the given polynomial f(x). **Ex.3:** Find the value of a for which (x + a) is a factor of the polynomial $f(x) = x^3 + ax^2 - 2x + a + 6.$ (x + a) is a factor of $f(x) = x^3 + ax^2 - 2x + a + 6$ Sol: \Rightarrow f(-a) = 0 \Rightarrow (-a)³ + a(-a)² - 2(-a) + a + 6 = 0 $3a = -6 \qquad \Rightarrow \qquad a = -2$ \Rightarrow Hence, the required value of a is -2. Ex.4: Using remainder theorem show that (a - b), (b - c) and (c - a) are the factors of the $a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)$. $p(a) = a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)$ Sol: if (a - b) is a factor of p(a) then remainder $= p(b) = b(b^2 - c^2) + b(c^2 - b^2) + c(b^2 - b^2)$ $= h^3 - hc^2 + hc^2 - h^3$ Remainder = 0Since remainder = 0, therefore (a - b) is a factor of $a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)$. Similarly,

if polynomial is p(b) then remainder = p(c) = 0if polynomial is p(c) then remainder = p(a) = 0therefore (b - c) and (c - a) are also factors of $a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2).$