CONSTRUCTIONS

BASIC CONSTRUCTION

INTRODUCTION

The diagrams, which were necessary to prove theorems or solving the problems were not necessarily very accurate. They were drawn only to give you a feeling for the situation and as an add for proper reasoning. But many times, we need to draw accurate figures. For examples to draw road map of a city, to draw layout plan of a building to draw a design of a vehicle etc. To draw such accurate figures, we must have some basic knowledge of geometrical constructions, which is a process of drawing a geometrical figure using some geometrical instruments like graduated ruler, protector, compass, a pair of set – squares.

In earlier classes, you have learned some simple geometrical constructions like drawing a line segment of a given measurement, making an angle with the help of protector etc. In this chapter; you will learn some more basic geometrical constructions using ruler and compass with reasoning behind it, why these constructions are valid.

TO CONSTRUCT THE BISECTOR OF A GIVEN ANGLE

Steps of Construction :

- **Step 1:** Draw a line segment AB.
- **Step 2:** With A as centre and any radius, draw an arc, cutting AB at P.
- **Step 3:** With P as centre and the same radius as above, draw an arc cutting the previous arc at Q.
- Step 4: Join AQ
- **Step 5:** With P as centre and a radius more than $\frac{1}{2}$ PQ, draw an arc.
- **Step 6:** With Q as centre and with the same radius, draw another arc, cutting the previous arc at R.
- Step 7:Join AR.Thus, AR is the required bisector ofBAC.

MATHS

CLASS 9

Justification :

Now let us see how this method gives us the required angle bisector. Join PR and QR.

In triangles APR and AQR, we have

AP = AQ	[AP and AQ are radii of the same arc]

PR = QR[PR and QR are arcs of equal radii]

AR = AR[Common]

 $\Delta APR \cong \Delta AQR[By SSS criteria]$

 $\Rightarrow \angle PAR = \angle QAR$ [C.P.C.T.]

Hence, AR is the bisector of \angle BAC.

TO CONSTRUCT THE PERPENDICULAR BISECTOR OF A GIVEN LINE SEGMENT

Given a line segment LM, we have to draw the perpendicular bisector.

Steps of Construction :

Step 1:	Draw a line segment $\frac{1}{2}$ LM of any given length.
Step 2:	Taking L and M as centres and radius more than LM draw arcs on both sides of the
	line segment LM (tointersect each other)

Step 3: Let these arcs intersect each other at R and S.

Join RS intersecting LM at P. Then P bisects the line segment LM as shown in figure. Step 4: Join LR, RM, MS and LS.

CLASS 9

Justification

In Δ RLS and Δ RMS,	
LR = MR	[Arcs of equal radii]
LS = MS	[Arcs of equal radii]
RS = RS	[Common]
$\Delta \text{RLS} \cong \Delta \text{RMS}$	[By SSS criteria]
$\therefore \angle LRP = \angle MRP$	[C. P. C. T]
Now, in \triangle RPL and \triangle RPM	
LR = MR	[Arcs of equal radii]
$\angle LRP = \angle MRP$	[Proved above]
RP = RP	[Common]
$\therefore \Delta RPL \cong \Delta RPM$	[By SAS criteria]
$LP = MP \text{ and } \angle RPL = \angle RPM$	[C. P. C. T]
$\angle RPL + \angle RPM = 180^{\circ}$	[Linear pair axiom]

 $\therefore \angle RPL = \angle RPM = 90^{\circ}$

 \therefore RPS is the perpendicular bisector of LM.

Ex.1 Draw a line segment of length 7.8 cm draw the perpendicular bisector of this line segment.

Sol. Given the given the segment be AB = 7.8 cm.

STEPS :

- (i) Draw the line segment AB = 7.8 cm.
- (ii) With point A as centre and a suitable radius, more than half the length of AB, draw arcs on both the sides of AB.

CLASS 9

MATHS

- (iii) With point B as centre and with the same radius draw arcs on both the sides of AB. Let these arc cut at points P & Q as shown on in the figure.
- (iv) Draw a line through the points P and Q. The line so obtained is the required perpendicular bisector of given line segment AB.

[By construction]

[By construction]

[By construction]

[Common side]

[Proved above]

[By SAS]

[Common]

[By SSS]

[By cpctc]

Line PQ is perpendicular bisector of AB.

- (A) PQ bisects AB i.e., OA = OB.
- (B) PQ is perpendicular to AB i.e., $\angle PAO = \angle POB = 90^{\circ}$.

Proof:

In $\triangle APQ$ and $\triangle BPQ$:

AP = BP

AQ = BQ

PQ = PQ

 $\Rightarrow \qquad \Delta APQ = \angle BPQ$

 $\Rightarrow \qquad \angle APQ = \angle BPQ$

Now, in \triangle APO & \triangle BPO

AP = BP

OP = OP

 $\angle APO = \angle BPO$

 $\Rightarrow \Delta APO \cong \Delta BPO$

And, $\angle POA = \angle POB$

 $=\frac{180}{2}=90^{0} \qquad [\because \angle POA + \angle POB = 180^{0}]$

 \Rightarrow PQ is perpendicular bisector of AB.

CONSTRUCT OF STANDARD ANGLES

Given a ray AB, we want to construct another ray AC such that $\angle CAB = 60^{\circ}$

Steps of Construction :

- **Step 1:** Taking A as centre and any suitable radius, draw an arc to intersect the ray AB at D.
- **Step 2:** Taking D as centre and same radius as in step (i), draw another arc to intersect the previous arc at E.
- **Step 3:** Draw ray AC passing through E. Then $\angle CAB = 60^{\circ}$.

Justification:

Join DE.

Then AD = AE = DE

- \therefore $\triangle ADE$ is equilateral $\Rightarrow \angle EAD = 60^{\circ}$
- $\therefore \angle CAB = 60^{\circ}$
- **Ex.2:** Construct an angle 120°.

Sol: Steps of Construction

- **Step 1:** Draw a ray OA.
- **Step 2:** With O as centre and any radius, draw an arc cutting OA at P.
- **Step 3:** With P as centre and the same radius draw an arc, cutting the first arc at Q.
- **Step 4:** With Q as centre and the same radius, draw an arc, cutting the arc drawn in step 2 at R.
- **Step 5:** Join OR and produce it to any point C. $\angle AOC$ so obtained is the angle of measure 120°.

To Construct and Angle of 30^0 :

STEPS :

(i) Construct angle $ABC = 60^0$ by compass.

(ii) Draw BD, the bisector of angle ABC.

The, $\angle DBC = 30^{0}$

To Construct an Angle of 90^0 :

STEPS

(i) Construct angle ABC = 120.0 by using compass.

(ii) Draw PB, the bisector of angle EBG.

Then, $\angle PBC = 90^{\circ}$

Alternative Method :

- (i) Draw a line segment BC of any suitable length.
- (ii) Produce CB upto a arbitrary point O.
- (iii) Taking B as centre, draw as arc which cuts OC at points D and E.
- (iv) Taking D and E as centres and with equal radii draw arcs with cut each other at point P.

[The radii in this step must be of length more than half of DE.]

(v) Join BP and produce.

Then, $\angle PBC = 90^{\circ}$

To Construct an Angle of 45^0

STEPS

(i) Draw $\angle PBC = 90^{\circ}$

(ii) Draw AB which bisects angle PBC,

Then, $\angle ABC = 45^{\circ}$

Alternative Method :

STEPS :

(i) Construct $\angle ABC = 60^{\circ}$

(ii) Draw BD, the bisector of angle ABC.

(iii) Draw BE, the bisector of angle ABD.

Then, $\angle EBC = 45^{0}$

To Construct an Angle of 105^0 :

STEPS :

(i) Construct $\angle ABC = 120^0$ and $\angle PBC = 90^0$

(ii) Draw BO, the bisector of $\angle ABP$.

Then, $\angle OBC = 105^0$

To Construct an Angle of 150° .

STEPS :

- (i) Draw line segment BC of any suitable length. Produce CB upto any point O.
- (ii) With B as centre, draw an arc (with any suitable radius) which buts OC at points D and E.
- (iii) With D as centre, draw an arc of the same radius, as taken in step 2, which cuts the first arc at point F.
- (iv) With F as centre, draw one more arc of the same radius, staken in step 2, which cuts the first arc at point G.
- (v) Draw PB, the bisector of angle EBG.

Now \angle FBD = \angle GBF = \angle EBG = 60⁰

Then, $\angle PBC = 150^{\circ}$

To Construct an Angle of 135^0 .

STEPS :

(i) Construct $\angle PBC = 150^0$ and $\angle GBC = 120^0$

(ii) Construct BQ, the bisector of angle PBG.

Then, $\angle QBC = 135^{0}$

