CIRCLES

EQUAL CHORDS AND THEIR DISTANCES FROM THE CENTRE

EQUAL CHORDS AND THEIR DISTANCE FROM THE CENTRE

THEOREM 5 :

Equal chords of a circle are equidistant from the centre.

Given : A circle C(0, r) in which chord AB = chord CD, OL \perp AB and OM \perp CD.

To Prove : OL = OM

Construction : Join OA and OC.

Proof:

We know that the perpendicular from the centre of a circle to a chord bisects the chord.

$$\therefore$$
 AL = $\frac{1}{2}$ AB and CM = $\frac{1}{2}$ CD.

Since, AB = CD (Given)

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD$$
$$\Rightarrow AL = CM$$

Now, in \triangle OLA and \triangle OMC, we have

AL = CM	[By (1)]
OA = OC	[Each equal to r]
$\angle OLA = \angle OMC$	[Each equal to 90º]
∴∆OLA ≅∆OMC	[By RHS-congruence]
So, $OL = OM$	[By c.p.c.t.]

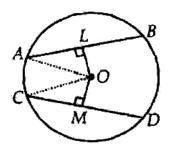
Hence, AB and CD are equidistant from 0.

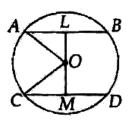
THEOREM 6 :

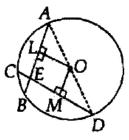
Chords equidistant from the centre of a circle are equal in length. (Converse of Theorem 5)

Given : Circle C(0, r), OL \perp AB, OM \perp CD, OL = OM

To Prove : AB = CD







Case I (Fig. 1)

Case II (Fig. 2)

Proof:

Case I :	AB CD			
	In fig. (1), AB CD. Join OA and OC			
	In $\triangle OAL$ and $\triangle OCM$,			
	OA = OC	[Radius]		
	OL = OM	[Given]		
2	$\angle 0LA = \angle 0MC$	[Each 90º]		
=	$\Rightarrow \Delta OAL \cong \Delta OCM$	[By RHS congruency]		
=	\Rightarrow AL = CM	[By c.p.c.t.]	(1)	
Since perpendicular from centre bisects the chord				
=	\Rightarrow 2AL = AB; 2CM = CD		(2)	
F	From (1) and (2), we get			
AB = CD				
Case II : AB and CD are intersecting at E.				
	∴Join OA and OD			
Z	$\Delta OAL \cong \Delta ODM$	[Same as case I]		
=	\Rightarrow AL = DM	[By c.p.c.t.]	(3)	
Since perpendicular from centre bisects the chord				
2	2AL = AB; 2DM = CD		(4)	
F	From (3) and (4), we get			
A	AB = CD			
.:.	∴ From both case I and case II, we get			
A	AB = CD			

CLASS 9

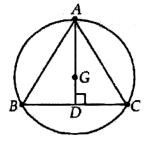
- **Ex.1** An equilateral triangle of side 9 cm is incribed in a circle. Find the radius of the circle.
- Sol: Let ABC be an equilateral triangle of side 9 cm and let AD be one of its medians. Let G be the centoroid of \triangle ABC. Then, AG : GD = 2 : 1. We know that in a equilateral triangle centroid coincides with the circumcentre. Therefore, G is the centre of the circumcircle with circumradius GA.

Also, G is the centre and GD \perp BC. Therefore, BD = CD = 4.5 cm. In right triangle ADB, we have

$$AB^{2} = AD^{2} + DB^{2}$$
$$\Rightarrow \qquad 9^{2} = AD^{2} + (4.5)^{2}$$

$$\Rightarrow \qquad \text{AD} = \sqrt{81 - \frac{81}{4}} = \frac{9\sqrt{3}}{2} \text{ cm}$$

$$\therefore \qquad \text{Radius AG} = \frac{2}{3} \text{AD} = 3\sqrt{3} \text{ cm}.$$



- **Ex.2** AB and CD are equal chords of a circle whose centre is O. When produced, these chords meet at E. Prove that EB = ED.
- **Sol. Given :** AB and CD are equal chords of a circle whose centre is O. When produced, these chords meet at E.

To Prove : EB = ED.

Construction : From O draw OP \perp AB and OQ \perp CD. Join OE.

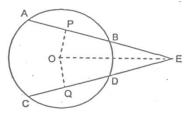
Proof:

 $\therefore AB = CD$ [Given]

 \therefore OP = OQ [\therefore Equal chords of a circle are equidistant from the centre]

Now in right tingles OPE and OQE,

OE = OE[Common]Side OP = Side OQ[Proved above] $\therefore \ \Delta OPE \cong \Delta OQE$ [By RHS]



$\therefore OE = QE$	[By cpctc]
$\Rightarrow PE - \frac{1}{2}AB = QE - \frac{1}{2}CD$	[:: AB = CD (Given)]
\Rightarrow PE - PB = QE - QD	
\Rightarrow EB = ED.	Hence Proved.

- **Ex.3** Bisector AD of \angle BAC of \triangle ABC passed through the centre O of the circumcircle of \triangle ABC. Prove that AB = AC.
- **Sol.** Given : Bisector AD of \angle BAC of \triangle ABC passed through the centre O of the

circumcircle of \triangle ABC,

To Prove : AB = AC.

```
Construction : Draw OP \perp AB and OQ \perp AC.
```

Proof:

In $\triangle APO$ and $\triangle AQO$,

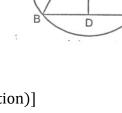
 $\angle OPA = \angle OQA$ [Each = 90⁰ (by construction)]

 $\angle OAP = \angle OAQ$ [Given]

OA = OA [Common]

- $\therefore \quad \Delta APO \cong \Delta AQO \qquad [By ASS cong. prog.]$
- $\therefore \qquad OP = OQ \qquad [By cpctc]$
- $\therefore \qquad AB = AC. \qquad [:: Chords equidistant from the centre are equal]$

Hence Proved.



0

Ex.4 AB and CD are the chords of a circle whose centre is O. They intersect each other at P. If PO be the bisector of \angle APD, prove that AB = CD.

OR

In the given figure, O is the centre of the circle and PO bisect the angle APD. prove that AB = CD.

Sol. Given : AB and CD are the chords of a circle whose centre is O. They interest each

other at P. PO is the bisector of \angle APD.

To Prove : AB = CD.

Construction : Draw OR \perp AB and OQ \perp CD.

Proof:

In $\triangle OPR$ and $\triangle OPQ$,

 $\angle OPR = \angle OPQ$ [Given]

OP = OP [Common]

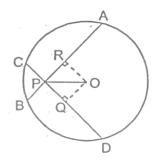
And $\angle ORP = \angle OQP$ [Each = 90⁰]

 $\therefore \quad \Delta ORP \cong \Delta OPQ \qquad \qquad [By AAS]$

 \therefore OR = OQ [By cpctc]

$$\therefore$$
 AB = CD

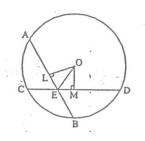
[::Chords of a circle which are equidistant from the centre are equal]



CLASS 9

- **Ex.5** Chords AB and CD of a circle with centre O, intersect at a point E. If OE objects $\angle AED$. Prove that AB = CD.
- **Sol.** In \triangle OLE and \triangle OME

$\angle OLE = \angle OME$	[90 ⁰ each]
$\angle LEO = \angle MEO$	[Given]
And $OE = OE$	[Common]
$\therefore \Delta OLE \cong \Delta OME$	[By AAS Criteria]
\Rightarrow OL = OM	[By cpctc]



This chords AB and CD are equidistant from centre. But we know that only equal chords are equidistant from centre.

 \Rightarrow AB = DC