CIRCLES

CYCLIC QUADRILATERAL

CYCLIC QUADRILATERAL

A quadrilateral ABCD is called cyclic if all the four vertices of it lie on a circle.

Theorem-7:

The sum of either pair of opposite angles of a cyclic quadrilateral is 180^{\hboxmu}

Given : A cyclic quadrilateral ABCD.

To Prove : $\angle A + \angle C = \angle B + \angle D = 180^{\circ}$

Construction : Join AC and BD.

Proof:

 $\angle ACB = \angle ADB$

[Angles of same segment]

And $\angle BAC = \angle BDC$ [Angles of same segment]

 $\therefore \angle ACB + \angle BAC = \angle ADB + \angle BDC = \angle ADC.$

Adding $\angle ABC$ to both sides, we get

 $\angle ACB + \angle BAC + \angle ABC = \angle ADC + \angle ABC.$

The left side being the sum of three angles of $\triangle ABC$ is equal to 180° .

CLASS 9

 $\therefore \qquad \angle ADC + \angle ABC = 180^{0}$

i.e., $\angle D + \angle B = 180^{\circ}$

 $\therefore \qquad \angle A + \angle C = 360^{0} \cdot (\angle B + \angle D) = 180^{0} \qquad [\therefore \angle A + \angle B + \angle C + \angle D = 360^{0}]$ Hence Proved.

Corollary:

If the sum of a pair of opposite angles of a quadrilateral is 180⁰, then quadrilateral is cyclic.

Ex.1 ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If \angle DBC = 70⁰, \angle BAC is 30⁰, find \angle BCD. Further, if B = BC, find \angle ECD.

Sol.
$$\angle CDB = \angle BAC = 30^0$$
 ...(i)

[Angles in the same segment of a circle are equal]

$$\angle DBC = 70^0$$
(ii)

In \triangle BCD,

$$\angle BCD + \angle DBC + \angle CDB = 180^{0}$$
 [Sum of all he angles of a triangle is 180^{0}]

 $\Rightarrow \angle BCD + 70^0 + 30.0 = 180^0$ [Using (i) and (ii)

 $\Rightarrow \angle BCD + 100^0 = 180^0$

 $\Rightarrow \angle BCD = 180^{\circ} - 100^{\circ}$

$$\Rightarrow \angle BCD = 80^0$$
 ...(iii)

In $\triangle ABC$,

AB = BC

 $\therefore \angle BCA = \angle BAC = 30^{0}$...(iv)

[Angles opposite to equal sides of a triangle are equal]

'C

	Now, $\angle BCD = 80^{\circ}$	[From (iii)]	
	$\Rightarrow \angle BCA + \angle ECD = 80^{\circ}$		
	$\Rightarrow 30^{0} + \angle ECD = 80^{0}$		
	$\Rightarrow \angle ECD = 80^{\circ} - 30^{\circ}$		
	$\Rightarrow \angle ECD = 50^{\circ}$		
Ex.2	If the nonparallel side of a trapezium are equal, prove that it is cyclic.		
Sol.	Given : ABCD is a trapezium whose two non-parallel sides AB and BC are equ To Prove : Trapezium ABCD is a cyclic.		
	Construction : Draw BE AD.		B
	Proof :	/	
	∴ AB DE	[Given]	/E(
	AD BE	[By construction]	
	∴ Quadrilateral ABCD is a parallelogram.		
	$\therefore \angle BAD = \angle BED \dots(i)$	 [Opp. angles of a gm] [Opp. sides of a gm] [Given] 	
	And, $AD = BE$ (ii)		
	ButAD = BC(iii)		
	From (ii) and (iii),		
	BE = BC		
	$\therefore \ \angle BEC = \angle BCE \dots (iv)$	[Angles opposite to equ	ual sides]
	$\angle BEC + \angle BED = 180^0$ [Linear Pair Axiom]		
	$\Rightarrow \angle BCE + \angle BAD = 180^{\circ}$	[From (iv) and (i)]	

3

 \Rightarrow Trapezium ABCD is cyclic.

[\therefore If a pair of opposite angles of a quadrilateral 180⁰, then the quadrilateral is cyclic] Hence Proved.

- **Ex.3** Prove that a cyclic parallelogram is a rectangle.
- **Sol. Given :** ABCD is a cyclic parallelogram.

To Prove : ABCD is a rectangle.

Proof:

∴ ABCD is a cyclic quadrilateral

 $\therefore \quad \angle 1 + \angle 2 = 180^0 \qquad \dots (i)$

[.: Opposite angles of a cyclic quadrilateral are supplementary]

: ABCD is a parallelogram

From (i) and (ii),

 $\angle 1 = \angle 2 = 90^0$

 \therefore gm ABCD is a rectangle. Hence Proved.

Ex.4 Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are

$$90^{0} - \frac{1}{2}A, 90^{0} - \frac{1}{2}Ban \oplus 0^{0} - \frac{2C}{2}.$$

Sol. Given : Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D,

E and F respectively.

CLASS 9

To Prove : The angles of the
$$\triangle DEF$$
 are $90^\circ - \frac{\angle A}{2}, 90^\circ - \frac{\angle B}{2}$ an $90^\circ - \frac{C}{2}$ respectively.

Construction : Join DE, EF and FD.

Proof:

 $\angle FDE = \angle FDA + \angle EDA = \angle FCA + \angle EBA$

[\therefore Angles in the same segment are equal]

$$=\frac{1}{2}\angle C + \frac{1}{2}\angle B$$

$$\Rightarrow \angle D = \frac{\angle C + \angle B}{2} = \frac{18\emptyset - \angle A}{2} \qquad [\therefore \text{ In } \triangle ABC, \angle A + \angle B + \angle C = 180^{0}]$$

$$\Rightarrow \angle D = 90^{0} - \frac{\angle A}{2}$$

Similarly, we can show that

$$\angle E = 90^{\circ} - \frac{\angle B}{2}$$

And $\angle F = 90^{\circ} - \frac{\angle C}{2}$.

Hence Proved.

Ex.5 Find the area of a triangle, the radius of whose circumcircle is 3 cm and the length of the altitude drawn from the opposite vertex to the hypotenuse is 2 cm.

Sol. We know that the hypotenuse of a right angled triangle is the diameter of its circumcircle.

 \therefore BC = 20B = 2 × 3 = 6 cm

Let, AD \perp BC

AD = 2 cm

[Given]

$$\therefore \text{ Area of } \Delta ABC = \frac{1}{2}(BC)(AD) = \frac{1}{2}(6)(2)$$

$$= 6 \text{ cm}^2$$
. Ans.

