CIRCLES

ANGLE SUBTENDED BY A CHORD AT A POINT

Angle subtended by a chord at the centre:

is the angle formed at the centre of the circle when the end points of the chord are joined to the centre. In fig. AB is a chord of the circle. AO and BO are radii of the circle, then $\angle AOB$ is the angle subtended by the chord at the centre of the circle.

AB

Angle subtended by the chord at a point on the circle:

is the angle formed by joining the end points of the chord to a point on the circle.

In figure, $\angle ACB$ is the angle subtended by the chord AB at the point

C of the circle.

THEOREM 1 :

Equal chords of a circle subtend equal angles at the centre.

Given : A circle C(0, r) in which chord AB = chord CD.

To Prove : $\angle AOB = \angle COD$

Proof:

In $\triangle AOB$ and $\triangle COD$, we have

OA = OC	[Each equal to r]
OB = OD	[Each equal to r]
AB = CD	[Given]
∆AOB ≅∆COD	[By SSS-congrunce]
Hence, $\angle AOB = \angle COD$	[C.P.C.T.]

CLASS 9

THEOREM 2 :

(Converse of Theorem 1) If the angles subtended by two chords at the centre of a circle are equal then the chords are equal.

Given : A circle C(0, r) in which AB and CD are the chords such that $\angle AOB = \angle COD$.

To prove : AB = CD

Proof:

In $\triangle AOB$ and $\triangle COD$, we have

OA = OC	[Each equal to r]
OB = OD	[Each equal to r]
$\angle AOB = \angle COD$	[Given]
$\triangle AOB \cong \triangle COD$	[By SAS-congruence]
Hence, AB = CD	[C.P.C.T.]

Ex.1 In figure, AB = CB and O is the centre of the circle. Prove that BO bisects $\angle ABC$.

Sol. Given : In figure, AB = CB and O is the centre of the circle.

To Prove : BO bisects $\angle ABC$.

Construction : Join OA and OC.

Proof:

In $\triangle OAB$ and $\triangle OCB$,

OA = OC	[Radii of the same circle]
AB = CB	[Given]
OB = OB	[Common]
$\therefore \Delta OAB \cong \Delta OCB$	[By SSS]
$\therefore \ \angle ABO = \angle CBO$	[By cpctc]
\Rightarrow BO bisects \angle ABC.	Hence Proved.

CLASS 9

Two circles with centres A and B intersect at C and D. Prove that $\angle ACB = \angle ADB$. Ex.2

Sol. **Given :** Two circles with centres A and B intersect at C and D.

To Prove : $\angle ACB = \angle ADB$.

Construction : Join AC, AD, BC, BD and AB.

Proof:

In $\triangle ACB$ an $\triangle ADB$,		
AC = AD	[Radii of the same circle]	
BC = BD	[Radii of the same circle]	
AB = AB	[Common]	
$\therefore \Delta ACB \cong \Delta ADB$	[By SSS]	
$\therefore \angle ACB = \angle ADB.$	[By cpctc]	Hence Proved.

