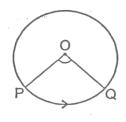
CIRCLES

ANGLE SUBTENDED BY AN ARC OF A CIRCLE

Angle Subtended By An Arc Of A Circle:

In figure, the angle subtended by the minor arc PQ at O is \angle POQ and the angle subtended by the major arc PQ at O is reflex angle \angle POQ.



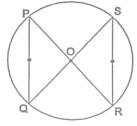
Theorem 1:

Equal chords of a circle subtend equal angles at the centre.

Given : A circle with centre O in which chord PQ = chord RS.

To Prove : $\angle POQ = \angle ROS$.

Proof:



\Rightarrow	$\angle POQ = \angle ROS$	[By cpctc]	Hence Proved.
\Rightarrow	$\Delta POQ = \Delta ROS$	[By SSS]	
PW = RS		[Given]	
OQ = OS		[Radii of the same circle]	
OP = OR		[Radii of the same circle]	

Theorem-2:

If the angles subtended by the chords at the centre (of a circle) are equal then the chords are equal.

Given : A circle with centre O . Chords PQ and RS subtend equal angles at the enter of the

[Given]

circle. i.e. $\angle POQ = \angle ROS$

To Prove : Chord PQ = chord RS.

Proof:

In \triangle POQ and \triangle ROS,

 $\angle POQ = \angle ROS$

OP = OR

0Q = 0S

[Radii of the same circle]

[Radii of the same circle]

 $\Rightarrow \Delta POQ \cong \Delta ROS [By SSS]$

 $\Rightarrow \quad \text{chord } PQ = \text{chord } RS \qquad [By cpctc]$

Hence Proved.

R

Corollary-1:

Two arc of a circle are congruent, if the angles subtended by them at the centre are equal.

Corollary 2 :

If two arcs of a circle are equal, they subtend equal angles at the centre.

Corollary 3 :

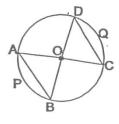
If two arc of a circle are congruent (equal), their corresponding chords are equal.

Corollary 4:

If two chords of a circle are equal, their corresponding arc are also equal.

$\angle AOB = \angle COD$

- \therefore Chord AB = Chord CD
- \therefore Arc APB = Arc COD.



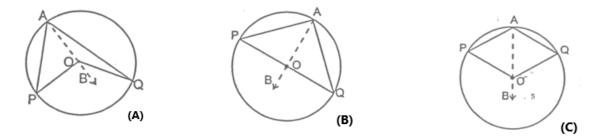
Theorem-3:

The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Given : An arc PQ of a circle subtending angles POQ at the centre O and PAQ at a point A on the remaining part of the circle.

To Prove : $\angle POQ = 2 \angle PAQ$.

Construction : Join AO and extend it to a point B.



Proof:

There arises three cases :

(A) are PQ is minor

(B) arc PQ s a semi - circle

(C) arc PQ is major.

In all the cases,

 $\angle BOQ = \angle OAQ + \angle AQO$ (i)

[::An exterior angle of triangle is equal to the sum of the two interior opposite angles]

In OAQ,	
---------	--

OA = OQ			[Radii of a circle]
<i>.</i>	$\angle 0AQ = \angle 0QA$	(ii)	[Angles opposite equal of a triangle are equal]

(i) and (ii), give,

MATHS

 $\angle BOQ = 2 \angle OAQ$ (iii)

Similarly,

 $\angle BOP = 2 \angle OAP$ (iv)

Adding (iii) and (iv), we get

$$\angle BOP + \angle BOQ = 2(\angle OAP + \angle OAQ)$$

 $\Rightarrow \angle POQ = 2 \angle PA. \qquad \dots (v)$

NOTE : For the case (C), where PQ is the major arc, (v) is replaced by reflex angles.

Thus, $\angle POQ = 2 \angle PAQ$.

Theorem-4:

Angles in the same segment of a circle are equal.

Proof:

Let P and Q be any two points on a circle to form a chord PQ, A and C any other points on the remaining part of the circle and O be the centre of the circle. Then,

$$\angle POQ = 2 \angle PAQ$$
 ...(i)

And $\angle POQ = 2 \angle PCQ$...(ii)

From above equations, we get

 $2 \angle PAQ = 2 \angle PCQ$

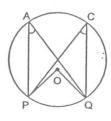
 $\Rightarrow \angle PAQ = \angle PCQ$

Theorem-5:

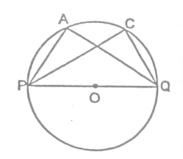
Angle in the semicircle is a right angle.

Proof:

 $\angle PAQ$ is an angle in the segment, which is a semicircle.



Hence Proved



$$\therefore \qquad \angle PAQ = \frac{1}{2} \angle PAO = \frac{1}{2} \times 180^0 = 90^0$$

[
$$\therefore \angle PQR$$
 is straight line angle or $\angle PQR = 180^0$]

If we take any other point C on the semicircle, then again we get

$$\angle PCQ = \frac{1}{2} \angle POQ = \frac{1}{2} \times 180^0 = 90^0$$
 Hence Proved.

Ex.1 In figure,
$$\angle ABC = 69^{\circ}$$
, $\angle ACB = 31^{\circ}$, find $\angle BDC$.

Sol. In \triangle ABC.

 $\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$

[Sum of all the angles of a triangle is 180⁰]

 $\Rightarrow \angle BAC + 69^0 + 31^0 = 180^0$

 $\Rightarrow \angle BAC + 100^0 = 180^0$

 $\Rightarrow \angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$

Now, $\angle BDC = \angle BAC = 80^{\circ}$.

Ans. [Angles in the same segment of a circle are equal]

Theorem-6:

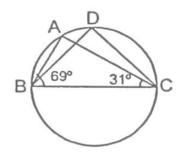
If a line segment joining two points subtend equal angles at two other points lying on the same side of the lien containing the line segment the four points lie on a circle (i.e., they are concyclic).

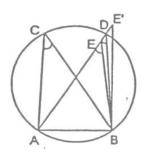
Given : AB is a line segment, which subtends equal angles at two points C and D.

i.e., $\angle ACB = \angle ADB$.

To Prove : The points A, B, C and D lie on a circle.

Proof:





MATHS

Let us draw a circle through the points A, C and B.

Suppose it does not pass through the point D.

Then it will intersect AD (or extended AD) at a point, say E (or E').

If points A,C,E and B lie on a circle,

 $\angle ACD = \angle AEB$ [: Angles in the same segment of circle are equal]

But it is given that $\angle ACB = \angle ADB$

Therefore, $\angle AEB = \angle ADB$

This is possible only when E coincides with D. [As otherwise $\angle AEB > \angle ADB$]

Similarly, E' should also coincide with D. So A, B, C and D are concyclic Hence Proved.

Ex.2 In figure, 0 is the centre of the circle. Prove that $\angle x + \angle y = \angle z$.

Sol.
$$\angle EBF = \frac{1}{2} \angle EOF = \frac{1}{2} \angle z$$

[::Angle subtended by an arc of a circle at the centre in twice the angle subtended by it at any point of the remaining part of the circle]

$$\therefore \angle ABF = 180^{0} - \frac{1}{2} \angle z \qquad ...(i) \qquad [Linear Pair Axiom]$$
$$\angle EDF = \frac{1}{2} \angle EOF = \frac{1}{2} \angle z$$

[::Angle subtend by any arc of a circle at the centre is twice the angle subtended by it at any point of the remaining part of the circle]

 $\therefore \ \angle ADE = 180^{0} - \frac{1}{2} \angle z \qquad \dots (ii) \qquad [Linear Pair Axiom]$ $\angle BCD = \angle ECF = \angle y \qquad [Vert. Opp. Angle]$ $\angle BAD = \angle x$

In quadrilateral ABCD

$$\angle ABC + \angle BCD + \angle CDA + \angle BAD = 2 \times 180^{\circ}$$

[Angle Sum Property of a quadrilateral]

$$\Rightarrow 180^{0} \cdot \frac{1}{2} \angle z + \angle y + 180^{0} \cdot \frac{1}{2} \angle z + \angle x = 2 \times 180^{0}$$
$$\Rightarrow \angle x + \angle y = \angle z \qquad \text{Hence Proved.}$$

- **Ex.3** AB is a diameter of the circle with centre O and chord CD is equal to radius OC, AC and BD produced meet at P. Prove that \angle CPD = 60° .
- Sol. Given : AB is a diameter of the circle with centre O and chord CD is equal to radius

OC. AC and BD produced meet at P.

....(ii)

To Prove : \angle CPD = 60⁰

Construction : Join AD.

Proof:

In $\triangle OCD$,

OC = OD ...(i)

OC = CD

[Given]

[Radii of the same circle]

From (i) and (ii),

OC = OD = CD

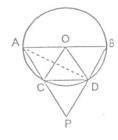
 $\therefore \Delta OCD$ is equilateral

 $\therefore \angle COD = 60^{\circ}$

$$\therefore \quad \angle CAD = \frac{1}{2} \angle COD = \frac{1}{2} \angle (60^0) = 30^0$$

[::Angle subtended by any arc of a circle at the centre is twice the angle subtended by it at any point of the reaming part of the circle]

 $\Rightarrow \angle PAD = 30^0$ (iii)



And,
$$\angle ADB = 90^{\circ}$$
(iv)
 $\Rightarrow \angle ADB + \angle ADP = 180^{\circ}$
 $\Rightarrow 90^{\circ} + \angle ADP = 180^{\circ}$
 $\Rightarrow \angle ADP = 90^{\circ}$ (v)

[Angle in a semi-circle] [Linear Pair Axiom]

[From (iv)]

In ΔDP ,

 $\angle ADP + \angle PAD + \angle ADP = 180^{\circ}$

[: The sum of the three angles of a triangles is 180^0]

 $\Rightarrow \angle APD + 30^{0} + 90^{0} = 180^{0} \qquad [From (iii) and (v)]$ $\Rightarrow \angle APD + 120^{0} = 180^{0}$ $\Rightarrow \angle APD = 180^{0} - 120^{0} = 60^{0}$ $\Rightarrow \angle CPD = 60^{0}.$ Hence Proved.