Microorganisms: Friend and Foe

Chemical Properties of Metal and Non-Metal

CHEMICAL PROPERTIES OF METALS

All metals give similar chemical reactions. However, the reactivity of a metal depends upon its nature and reaction conditions. Some typical reactions of metals are described below :

(i) **Reaction with oxygen :** All metals combine with oxygen to form metal oxides. Different metals react with oxygen under different conditions.

For example,

	4 Na	+	02	\longrightarrow 2 Na ₂ O
Sodium (Na) :	Sodium	ι +	0xygen/a	ir <u>room temp.</u> Sodium oxide
	2 Mg	+	02	→ 2 MgO
Magnesium (Mg) :	Magnesium	۱+	Oxygen	$\xrightarrow[(burns with a dazzling white light)]{Heat} Magnesium oxide$
	2 Zn	Ŧ	02	\longrightarrow 2 ZnO
Zinc (Zn) :	Zinc	+	Oxygen	(burns with a blue flame) Zinc oxide
	3 Fe	+	2 02	───────────────────────Fe ₃ O ₄
Iron (Fe) :	Iron	+	Oxygen	(no burning) → Ferroso-ferric oxide
	2 Cu	+	02	\longrightarrow 2 CuO
Copper (Cu) :	Copper	Ŧ	Oxygen	$\xrightarrow{\text{prolonged strong heating}} \text{Copper oxide}$

From the reaction conditions of the reactions given above, the order of reactivity of metals with oxygen is,

Sodium (Na) > Magnesium (Mg) > Zinc (Zn) > Iron (Fe) > Copper (Cu

Chemistry

(ii) Reaction with Water : Different metals react with water under different conditions. Reactions of some common metals with water are given below :

	Na	+	H ₂ O	\rightarrow	NaOH	+	H₂
Sodium (Na)	: Sodium	+	Water (cold)	—→So	odium hydroxide	+	Hydrogen
	Mg	+	H ₂ O	\rightarrow	MgO	+	H₂
Magnesium(Mg)	: Magnesiun	n +	Water (boiling)	—→ Ma	agnesium oxide	+	Hydrogen
	2 Fe	+	3H ₂ 0	\rightarrow	Fe ₂ 0 ₃	+	3 H ₂
Iron (Fe)	: Iron (red hot)	+	Steam	\longrightarrow Fe	erroso-ferric oxide	+	Hydrogen
	Cu	+	H ₂ O	$\longrightarrow Nc$	Reaction		
Copper (Cu)	: Copper	+	Water	\rightarrow No	reaction even a	t high	temperature
From the reaction of is	conditions of t	he abo	ve reactio	ons, the	order of reactivity	of me	tals with water
Sodium (Na) > Ma	gnesium (Mg)	> Iron	n (Fe) >	Copper ((Cu)		

Chemistry

(iii) Reactions with Acids : Most metals react with dilute acids produce salt and hydrogen gas. Reaction of some common metals with dilute hydrochloric acid are given below :

	2Na	+	2HCl	\rightarrow	2NaCi	+	H ₂			
Sodium (Na)	: Sodium	+	Hydrochloric acid(dil)	\rightarrow	Sodium chloride	+	Hydrogen	Vigorous		
	Mg	+	2HCl	\longrightarrow	MgCl ₂	+	H ₂			
Magnesium (Mg)	: Magnesium	1 +	Hydrochloric acid(dil)	\rightarrow	Magnesium chloride	+	Hydrogen	Rapid		
	Zn	+	нсі	\longrightarrow	ZnCl ₂	+	H ₂			
Zinc (Zn)	: Zinc	+	Hydrochloric acid(dil)	room temj	Zinc	+	Hydrogen	Moderate		
	Fe	+	2HCl	\longrightarrow	FeCl ₂	+	H ₂			
Iron (Fe)	: Iron	+	Hydrochloric acid(dil)	heatin	Iron g chlorid	e+	Hydrogen	Moderate		
	Cu	+	HCI	\longrightarrow	No Reactio	п				
Copper (Cu)	: Соррег	+	Hydrochloric acid(dil)	\longrightarrow	No reactio	п	even on h	eating		
From the reaction conditions of the reaction given above, the order of reactivity of these metals with dilute acid is										
Sodium (Na) > Mag	gnesium (Mg)	> Zin	c (Zn) > Iron	Sodium (Na) > Magnesium (Mg) > Zinc (Zn) > Iron (Fe) > Copper (Cu)						

Chemistry

CHEMICAL PROPERTIES OF NONMETALS

Some general chemical properties of nonmetals are described below :

Electronegative Character

Nonmetals are electronegative elements. Nonmetals have a tendency to accept electrons and form negatively charged ions (anions).

For examples.

Chlorine + e - \longrightarrow Chloride ion (an anion)

 $Oxygen + 2e - \longrightarrow Oxide ion (an anion)$

Thus, nonmetals are able to remove electrons from electropositive elements and act as oxidising agents.

Hydrogen is the only nonmetal which can lose as well as gain an electron.

н	+	e	\rightarrow	H_
Hydrogen	+	from a highly electropositive element	\longrightarrow	Hydride ion (an anion)
н	-	e⁻	\longrightarrow	H+
Hydrogen	-	from a highly electronegative element	\longrightarrow	Hydrogen ion (a cation)

Thus, hydrogen can act both as an oxidising as well as reducing agent.

Reaction with Halogens

Nonmetals react with halogen to give covalent halides. In pure state, the halides of nonmetals do not conduct electricity.

For example with chlorine,

2P	+	3Cl ₂	→	2PCI ₃
Phosphorus	+	Chlorine	Heat	Phosphorus trichloride
2P	+	5Cl ₂	→	2PCI ₅
Phosphorus	+	Chlorine	Heat	Phosphorus pentachloride
H ₂	+	Cl ₂	>	2HCI
Hydrogen	+	Chlorine	sunlight	Hydrogen chloride
Sulphur reacts w	ith fluori	ine at hìghe	er temperature to	give sulphur hexafluoride.
S	+	3Fe		SF ₆
Sulphur	+	Fluorine	high temp.	→ Sulphur hexafluoride

Reaction with Hydrogen

Nonmetals react with hydrogen to form covalent hydrides. Thus in the hydrides of nonmetals, hydrogen is bonded to the nonmetal atom by covalent bonds. The hydrides of nonmetals atom by covalent bonds. The hydrides of nonmetals do not conduct electricity. The hydrides of nonmetals may be acidic, basic or neutral depending upon the nature of the nonmetal. For example,

(i)	Sulphur with	hydrogen	gives hydrogen	sulphide (H_2S). H_2S	is weakly acidic in nature.
	H ₂	+	S	\longrightarrow	H ₂ S
	Hydrogen	+	Sulphur	\longrightarrow	Hydrogen sulphide (weakly acidic)
(ii)	Nitrogen read	ts with hy	drogen to give	ammonia (NH ₃). Am	monia is basic in nature.
	H ₂	+	3N2	\longrightarrow	2NH ₃
	Hydrogen	+	Nitrogen	\longrightarrow	Ammonia (basic)
(iii)	Oxygen react	s with hy	drogen to given	water (H ₂ O). Water	is neutral in nature.
	H ₂	+	02	\longrightarrow	2H ₂ 0
	Hydrogen	+	Oxygen	electric spark	Water

Reaction with Acids

Nonmetals do not displace hydrogen from dilute acids. This is because nonmetals are able to give electron(s) for the reduction of H+. Some nonmetals however react with concentrated oxidising acids to form the corresponding oxyacids. For example, sulphur reacts with conc. nitric acid to give sulphuric acid.

Sulphur	+	Nitric acid (conc.)	\longrightarrow	Sulphuric acid	+ Nitrogen dioxide + Water
---------	---	------------------------	-------------------	----------------	----------------------------

Displacement Reactions

Certain more reactive nonmetals displace less reactive nonmetals from their salt solutions. For example, Chlorine displaces bromine from bromides and iodine from iodides.

2KBr	+	Cl ₂	\rightarrow	2KCI	+	Br ₂
Potassium bromide	+	Chlorine	\longrightarrow	Potassium chloride	+	Bromine
2101	+	Cl ₂	\longrightarrow	2KCI	+	I ₂
Potassium iodide	+	Chlorine	\longrightarrow	Potassium chloride	+	Iodine

Oxides of Metals

The oxides of metals are basic in nature. When dissolved in water, metal oxides give alkaline (or basic) solution which turn red litmus blue. For example, magnesium (Mg) burns in air to give magnesium oxide (MgO), which is basic in nature.

2Mg	+	0,	\longrightarrow	2(MgO)
Magaaalum		Oxygen		Magnesium oxide
magnesium	+	(from air)	\rightarrow	(basic oxide)
MgO	+	H ₂ O	\longrightarrow	Mg(OH) ₂
		-		Magnesium hydroxide
Magnesium oxide	+	Water	\rightarrow	(basic in nature)
,			·	turns red litmus blue

Oxides of Nonmetals

The oxides of nonmetals are acidic in nature. When dissolved in water nonmetal oxides give acidic give solutions which turn blue litmus red.

For example, sulphur on burning in air, gives sulphur dioxide (SO2) which is acidic in nature.

S	+	02	\longrightarrow	SO2
		Oxygen		Sulphur dioxide
Sulphur	+	(fromair)	\longrightarrow	(acidic oxide)
SO2	+	H20	\longrightarrow	H2SO3
				Sulphurous acid
Sulphur dioxide	+	Water	\longrightarrow	turns blue litmus red