SQUARES AND SQUARE ROOTS

SQUARE

INTRODUCTION

Numbers which can be expressed as the product of two identical numbers are known as square numbers. These numbers are also known as perfect squares.

Let p and q are natural numbers such that $p = q^2$ then we say 'p' is the square of number 'q' e.g. $9 = 3^2$, so 9 is square of 3 and we call 9 as a perfect square number. Table below shows number and their squares from 1 to 10.

Number	1	2	3	4	5	6	7	8	9	10
Square	1	4	9	16	25	36	49	64	81	100

Properties of square numbers :

If you examine the table of square numbers, you will observe the following :

- (1) If a number ends with 1 or 9, its square ends with the digit 1.
- (2) If a number ends with 2 or 8, its square ends with the digit 4.
- (3) If a number ends with 3 or 7, its square ends with the digit 9.
- (4) If a number ends with 4 or 6, its square ends with the digit 6.
- (5) If a number ends with 5, its square also ends with the digit 5.
- (6) If a number ends with 0, its square also ends with 0.
- (7) No perfect square number can end with 2, 3, 7 or 8.
- (8) If a number is even, then its square is also even.
- (9) If a number is odd, then its square is also odd.
- (10) From above we known perfect square numbers ends with either 0 or 1 or 4 or 5 or 6 or 9.

CLASS 8

SQUARES

When a number is multiplied by itself the product is called the square of the number.

for eg., $2 \times 2 = 4$ or $2^2 = 4$. We say that the square of 2 is 4. Similarly, $3 \times 3 = 9$ or $3^2 = 9$, etc.

Definition

A natural number is said to be a perfect square, if it is the square of another natural

number.

For Ex., $5 \times 5 = 5^2 = 25$, $6 \times 6 = 6^2 = 36$, $7 \times 7 = 7^2 = 49$, etc.

So 4, 9, 16, 25, 36,..... are all perfect squares.

The squares of the first 30 natural numbers are :

$1^2 = 1$	$2^2 = 4$	$3^2 = 9$
$4^2 = 16$	$5^2 = 25$	$6^2 = 36$
$7^2 = 49$	$8^2 = 64$	$9^2 = 81$
$10^2 = 100$	$11^2 = 121$	$12^2 = 144$
$13^2 = 169$	$14^2 = 196$	$15^2 = 225$
$16^2 = 256$	$17^2 = 289$	$18^2 = 324$
$19^2 = 361$	$20^2 = 400$	$21^2 = 441$
$22^2 = 484$	$23^2 = 529$	$24^2 = 576$
$25^2 = 625$	$26^2 = 676$	$27^2 = 729$
$28^2 = 784$	$29^2 = 841$	$30^2 = 900$

CLASS 8

Note : For a number to be a perfect square, it should not have 2, 3, 7 or 8 in its units place. Also, a number is not a perfect square if it ends with odd number of zeros. It should have even number of zeros at the end.

Eg.
$$9^2 = 9 \times 9 = 81$$
; $13^2 = 13 \times 13 = 169$
 $16^2 = 16 \times 16 = 256$; $17^2 = 17 \times 17 = 289$
 $20^2 = 20 \times 20 = 400$ $21^2 = 21 \times 21 = 441$
 $35^2 = 35 \times 35 = 1225$ $90^2 = 90 \times 90 = 8100$
 $100^2 = 100 \times 100 = 10000$

Tip : $15^2 = (1 \times 2)25 = 225$, $25^2 = (2 \times 3)25 = 625$ etc