
UNDERSTANDING QUADRILATERALS

ANGLE SUM PROPERTY

ANGLE AND PROPERTY

Observe the following figures, Each figure is divided into triangles.

A triangle can be divided into one triangle, a quadrilateral into 2 triangles, a pentagon into

3 triangles, a hexagon into 4 triangles.

Thus, a polygon of n sides can be divides into (n - 2) triangles. Sum of the angles of a triangle = $180^\circ = (3 - 2) \times 180^\circ$ Sum of the angles of a quadrilateral = $360^\circ = (4 - 2) \times 180^\circ$ Sum of the angles of a pentagon = $540^\circ = (5 - 2) \times 180^\circ$ Sum of the angles of a hexagon = $720^\circ = (6 - 2) \times 180^\circ$ So, sum of the angles of a polygon of n-sides = $(n - 2) \times 180^\circ = (n - 2) \times 2 \times 90^\circ$ = $(2n - 4) \times 90^\circ = (2n - 4)$ right angles Thus, Sum of the angles of a polygon of n-sides = (2n - 4) right angles = $(n - 2) \times 180^\circ$

Ex.1 If two angles of a triangle are 40° & 58° then find the third angle.

Sol. : The sum of all angles = 180° (A.S.P.)

 $40^{\circ} + 58^{\circ} + \text{Third angle} = 180^{\circ}$

- \therefore Third angle = $180^{\circ} 98^{\circ} = 102^{\circ}$
- **Ex.2** If two angles of a hexagon are right angles & rest angles are same to each other then find the value of one of the other angles.

CLASS 8

Sol. Let the other each angle = x° $\therefore 90^{\circ} + 90^{\circ} + x + x + x + x = (n - 2) 180^{\circ}$ $\Rightarrow 180 + 4x = (6 - 2)180^{\circ}$ $\Rightarrow 4x = 720 - 180^{\circ}$ $\Rightarrow x = \frac{540}{4} = 135^{\circ}.$

Ex.3 Find the maximum exterior and minimum interior angle of regular polygon.

Sol. : Minimum number of sides in a regular polygon is 3 (equilateral Δ)

 \therefore each angle = x° (Let)

$$\therefore 3x = 180 \Rightarrow x = 60^{\circ}$$

- \therefore minimum value of interior angle = 60°
- \therefore maximum exterior angle = 120°

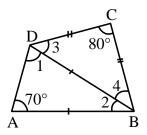
(by linear pair).

Ex.4 The angles of a quadrilateral are in ratio 1 : 3 : 7 : 9 find the measure of each angle.

Sol. Let angles are x° , $3x^\circ$, $7x^\circ$, $9x^\circ$

$$\therefore x + 3x + 7x + 9x = 360^{\circ}$$
 (A.S.P.)

 $\Rightarrow 20x = 360$


x = 18

 \therefore angles are 18, 18 × 3, 18 × 7, 18 × 9

= 18°, 54°, 126°, 162°

Verification $18^{\circ} + 54^{\circ} + 126^{\circ} + 162^{\circ} = 360^{\circ}$

Ex.5 Find the angles of quadrilateral ABCD, in given figure.

Sol.	$\therefore AB = BD (in \Delta ADB)$
	$\therefore \ \angle 1 = 70^{\circ}$
	∴ $\angle 1 + 70^{\circ} + \angle 2 = 180^{\circ}$ (A.S.P.)
	\Rightarrow 70 + 70 + $\angle 2 = 180^{\circ}$
	$\Rightarrow \angle 2 = 180^{\circ} - 140^{\circ} = 40^{\circ}$
	Also in $\triangle DCB$
	DC = CB
	$\therefore \angle 3 = \angle 4 = y$
	$\therefore y + y + 80 = 180^{\circ}$ (A.S.P.)
	$\Rightarrow 2y = 180 - 80$
	$\Rightarrow y = \frac{100}{2} = 50^{\circ}$
	$\therefore \ \angle 3 = \angle 4 = 50^{\circ}$
	$\therefore \ \angle ABC = \angle 2 + \angle 4 = 40^\circ + 50^\circ = 90^\circ$
	& $\angle ADC = \angle 1 + \angle 3 = 70^{\circ} + 50^{\circ} = 120^{\circ}$
	∴ angles are 70°, 90°, 80°, 120°.