PLAYING WITH NUMBERS

DIVISIBILITY TEST

TEST OF DIVISIBILITY

• TEST OF DIVISIBILITY BY 2.

A number is divisible by 2 if its units digit is even, i.e., if its units digit is any of the digits 0,

2, 4, 6 or 8.

For a number in the generalized form:

- (i) A two-digit number 10a + b : is divisible by 2 if 'b' is any of the digits 0, 2,4,6 or 8.
- (ii) A three-digit number 100a + 10b + c: is divisible by 2 if 'c' is any of the digits 0, 2, 4,

6 or 8.

Ex. The numbers 12, 68, 120, 854 are all divisible by 2.

• TEST OF DIVISIBILITY BY 3.

A number is divisible by 3, if the sum of its digits is divisible by 3. For a number in the generalized form:

(i) A two-digit number 10a + b: is divisible by 3 if (a + b) is divisible by 3.

(ii) A three-digit number 100a + 10b + c: is divisible if (a + b + c) is divisible by 3.

Ex. 21, 54, 123, 351 are all divisible by 3 but none of the numbers 22, 56, 76, 359, 835 divisible by 3.

• TEST OF DIVISIBILITY BY 5.

A number is divisible by 5, if its units digit is either 0 or 5. For a number in the generalized form :

(i) A two-digit number 10a + b: is divisible by 5 if 'b' is either 0 or 5.

(ii) A three-digit number 100a + 10b + c: is divisible by 5, if 'c' is divisible by 5.

Ex. The numbers 15, 80, 110 are all divisible by 5.

CLASS 8

• TEST OF DIVISIBILITY BY 9.

A number is divisible by 9 if the sum of its digits is divisible by 9. For a number in the generalized form:

(i) A two-digit number 10a + b: is divisible by 9 if 'a + b' is divisible by 9.

(ii) A three-digits number 100a + 10b + c: is divisible by 9 if 'a + b + c' is divisible by 9.

Ex. The numbers 18, 27, 225, 801 are all divisible by 9.

• TEST OF DIVISIBILITY BY 10.

A number is divisible by 10, if its units digit is 0. For a number in the generalized form :

(i) A two-digit number 10a + b: is divisible by 10, if 'b' is equal to 0.

(ii) A three-digit number 100a + 10b + c: is divisible by 10, if 'c' is equal to 0.

Ex. The numbers 20, 70, 580, 900 are divisible by 10.

• TEST OF DIVISIBILITY BY 11.

A number is divisible by 11, if the difference of its digits in odd places and the sum of its digits in even places is either 0 or a multiple of 11.

		(i)	(ii)	(iii)
Ex.	3 -digit $\rightarrow 264 \rightarrow$	2	6	4

Sum of the digits in odd places – Sum of the digits in even places.

(2+4) - 6 = 0

264 is divisible by 11

Ex. $61809 \rightarrow 6$ 1 8 0 9 (i) (ii) (iii) (iv) (v) $(6+8+9) - (1+0) \rightarrow 23 - 1 = 22$ 61809 is divisible by 11.

DIVISOR	DIVISIBLITY CONDITION	EXAMPLES
4	The last two digits divisible by 4.	40832
		32 is divisible by 4
6	It is divisible by 2 and by 3.	1458
		1 + 4 + 5 + 8 = 18 So it is
		divisible by 3 and the last digit
		is even, hence the number is
		divisible 6
7	Add 5 times the last digit to the	483
	rest.	$48 + (3 \times 5) = 63$
8	The number formed by last 3 digits	34152
	of given number should be visible	Examine divisibility of just 152
	by 8	
12	It is divisible by 1 and by 4.	324 : (32 × 2) - 4 = 60
13	Add the digits in alternate blocks of	2, 911, 272 : (2 + 272) + 911
	three from right to left, then	=637
	subtract the two sms.	
15	It is divisible by 3 and by 5.	390 : It is divisible by 3 and by 5.
19	Add twice the last digit to the rest	$437: 43 + (7 \times 2) = 57$

- **Ex.1** Find the least value of x for which 7x5462 is divisible by 9 :
- **Sol.** Let the required value be x then (7 + x + 5 + 4 + 6 + 2) = (24 + x) is divisible by 9.
- **Ex.2** Find the least value of x for which 4832x18 is divisible by 11.
- Sol. (Sum of digits at odd places) (Sum of digits at even places) (8 + x + 3 + 4) - (1 + 2 + 8) = (4 + x)

which should be divisible by 11, x = 7

- **Ex.3** What is the unit digit in the product $(684 \times 759 \times 413 \times 676)$?
- **Sol.** Unit digit in the given product = unit digit in the product $(4 \times 9 \times 3 \times 6) = 8$.

CLASS 8

What is the unit digit in the product $(3547)^{153} \times (251)^{72}$? Ex.4 Required digit = unit digit in $(7^{153} \times 1^{72})$ Sol. Now, 7^4 gives unit digit 1 and $1^{72} = 1$ $(7^{153} \times 1^{72}) = [(7^4)^{38} \times 7 \times 1]$ Required unit digit = $(1 \times 7 \times 1) = 7$. What is the unit digit in $(264)^{102} + (264)^{103}$? Ex.5 $(264)^{102} + (264)^{103} = (264)^{102} \times (1 + 264) = (264)^{102} \times 265$ Sol. Required unit digit = unit digit in $[4^{102} \times 5] = [(4^4)^{25} \times 4^2] \times 5 = 6 \times 6 \times 5 = 0$ Find the total number of prime factors in the product $(4^{11} \times 7^5 \times 11^2)$? Ex.6 $(2 \times 2)^{11} \times 7^5 \times (11)^2$ Sol. \Rightarrow (22)¹¹ × 7⁵ × (11)² $\Rightarrow 2^{22} \times 7^5 \times 11^2$ Required number of factors = (22 + 5 + 2) = 29Find the remainder when 2^{31} is divided by 5? **Ex.7** $2^{31} = (2^{10} \times 2^{10} \times 2^{10}) \times 2^{10}$ Sol. $\Rightarrow (2^{10})^3 \times 2 = (1024)^3 \times 2$ Unit digit in 2^{31} = unit digit in $[(1024)^3 \times 2] = 4 \times 2 = 8$ Now, 8 when divided by 5 gives 3 as remainder

 2^{31} when divided by 5 given remainder = 3.