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EXPONENTS AND POWERS 

LAWS OF EXPONENTS 

 

LAWS OF EXPONENTS (POSITIVE EXPONENTS) 

There are certain laws that govern the operations in numbers which are expressed in the 

exponential notation. 

Law-I  If x is a rational number and m and n are positive integers, then xm × xn = xm + n. 

   For Example, 
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Law-II  If x is a rational number and m and n are positive integers, such that m > n, then  

xm ÷ xn = xm–n  

   For Example, 
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Law-III  If x is a rational number and m and n are positive integers, then (xm)n = xm × n = 

xmn. 

   For Example, (22)3 = 22 × 22 × 22 = 22 + 2 + 2  

               = 26 = 22 × 3          (From Law I) 

Law-IV  If 
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Law-V  

1.   The Zero Exponent:  If x is a rational number and x  0, then x0 = 1.  

   For example, 50 = 1 and (–7)0 = 1. 

2.   The Negative Exponent: 

   If x is a rational number different from 0, then x–1 denotes the reciprocal of x. 

We know that the reciprocal of x is 
x

1
. Therefore, x–1 = 
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1
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   For Example, 6–1 = 
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. 

Law VI   If x is any rational number different from 0 and m is a positive integer, then x–m 

denotes the reciprocal of xm.  

   Also, 
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Ex.1  Find the value of 
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Ex.2   Evaluate : 
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Ex.3  Simplify : 
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Sol.  (a) The given product can be written as - 
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   (b) The exponent 
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Ex.4  If 
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    
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Ex.5  If 52x + 1 ÷ 25 = 125, find the value of x. 

Sol.  We have 52x + 1 ÷ 25 = 125  

   or 
25

5 1x2 +

 = 125  or   
55

5 1x2



+

 = 5 × 5 × 5 

   or 
2
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5 +

 = 53   or   52x + 1 – 2 = 53  

   or 52x – 1 = 53   or   2x – 1 = 3 

   or 2x = 4   or   x = 2 

Ex.6  Simplify and express the result as a power of 2. 

   (a) (34 × 35) ÷ 39    (b) 
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Sol.  (a) We have (34 × 35) ÷ 39 = 34 + 5 ÷ 39 = 39 ÷ 39  

    = 39 – 9 = 30 = 1 = 20, 

    Where 1 can be expressed as a power of 2 as 20. 
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          Again, 1 can be expressed as the power of 2 as 20. 
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Ex.7  By what number should we multiply 7–5, so that the product may be equal to 7 ? 

Sol.  Let the number be x. 

   Then 7–5 × x = 7 

   or   x = 
57

7
−

 = 7 × 75 = 76   

    The number is 76. 

Ex.8  By what number should 75 be divided, so that the quotient is 7–3 ? 

Sol.  Let the number be x. 

   Then 75 ÷ x = 7–3  

   Or  
x

75

 = 7–3    or    
3
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7

7
−
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   Or x = 75 × 73 = 78  

     The number is 78. 

 

 


