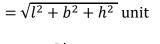
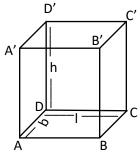
MENSURATION

SURFACE AREA OF CUBE CUBOID CYLINDER

SOME USEFUL FORMULAE

CUBOID: Let l, b and h denote respectively the length, breadth & height of a cuboid. Then,

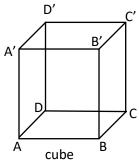

(i) Total surface area of the cuboid = 2 (lb + bh + lh) square units


(ii) Volume of the cuboid = Area of the base \times Height

= Length \times Breath \times Height

= lbh cubic units

(iii) Diagonal of cuboid

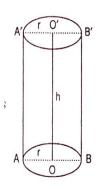


(iv) Area of four walls of a room = lh + lh + bh + bh = 2 (l + b) h square units.

CUBE : If the length of each edge of a cube is 'a' units, then

- (i) Total surface area of the cube = $6a^2$ square units
- (ii) Volume of the cube $= a^3$ cubic units
- (iii) Diagonal of the cube = $\sqrt{3}a$ units

CLASS 8


RIGHT CIRCULAR CYLINDER:

For a right circular cylinder of base radius r and height (or length) h, we have

(i) Area of each and = Area of base = pr²
(ii) Curved surface area = 2 p r h

 $= 2 \text{pr} \times \text{h}$

= Perimeter of the base \times Height

(iii) Total surface area = Curved surface area + Area of circular ends

 $= 2pr + = 2r^2$ = 2pr (h + r)

(iv) Volume = pr^2

= Area of the base \times height

RIGHT CIRCULAR HOLLOW CYLINDER:

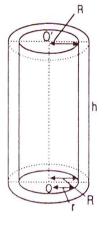
Let R and r be the external and internal radii of a hollow cylinder of height h. Then,

- (i) Area of each end = $p(R^2 r^2)$
- (ii) Curved surface area of hollow cylinder

= External surface area + Internal surface area

= 2 p R H + 2 p r h

$$= 2ph(R + r)$$


(iii) Total surface area

$$= 2 p Rh + 2p rh + 2(p R^2 - pr^2)$$

$$= 2p(R+r)(R+h-r)$$

(iv) Volume of material = External volume - Internal volume

$$= pR^{2}h - pr^{2}h$$
$$= ph(R^{2} - r^{2})$$

