MENSURATION

AREA OF PARALLELOGRAM

AREA OF QUADRILATERALS

Area of a Parallelogram:

Consider parallelogram ABCD.

Let AC be a diagonal

In ΔADC and ΔCBA

AD = CB, CD = AB

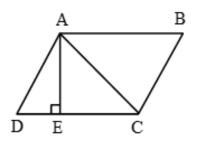
AC is common

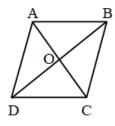
- $\therefore \Delta ADC \cong \Delta CBA$
- ∴ Area of parallelogram ABCD
- = Area of \triangle ADC + Area of \triangle ABC
- $= 2 \times \text{Area of } \Delta \text{ADC}$
- = $2 \times (\frac{1}{2} CD \times AE)$ (where $AE \perp DC$)
- $= DC \times AE$

i.e. Area of parallelogram = base \times height

Area of a Rhombus

Since a rhombus is also a parallelogram, its area is given by


Area of rhombus = base \times height


The area of a rhombus can also be found if the length of the diagonals are

given. Let ABCD

be a rhombus. We know that its diagonals AC and BD bisect each other at right angles.

Area of rhombus ABCD = area of \triangle ABD + area of \triangle CBD

MATHS

 $= \frac{1}{2} (BD \times AO) + \frac{1}{2} (BD \times CO)$

(since A0 \perp BD and C0 \perp BD)

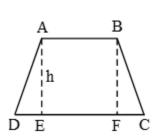
 $= \frac{1}{2}$ BD (A0 + C0) $= \frac{1}{2}$ BD × AC

i.e. Area of rhombus = $\frac{1}{2} \times$ product of diagonals

Area of a Trapezium :

Let ABCD be a trapezium with AB || DC. Draw AE and BF perpendicular to DC.

Then AE = BF = height of trapezium = h


Area of trapezium ABCD = Area of \triangle ADE + Area of rectangle ABFE + Area of \triangle BCF

 $= \frac{1}{2} \times DE \times h + EF \times h + \frac{1}{2}FC \times h$

 $= \frac{1}{2} h (DE + 2EF + FC)$

 $= \frac{1}{2} h (DE + EF + FC + EF)$

 $= \frac{1}{2} h (DC + AB)$ (since EF = AB)

i.e. Area of trapezium = $\frac{1}{2} \times ($ sum of parallel sides $) \times ($ distance between parallel sides)

Area of a Quadrilateral :

Let ABCD be a quadrilateral, and AC be one of its diagonals. Draw perpendiculars BE and

DF from B and D respectively to AC.

Area of quadrilateral ABCD

= Area of \triangle ABC + Area of \triangle ADC

 $= \frac{1}{2}$ AC \times BE $+ \frac{1}{2}$ AC \times DF

$$= \frac{1}{2} AC (BE + DF)$$

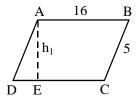
If AC = d, $BE = h_1$ and $DF = h_2$ then

Area of quadrilateral = $\frac{1}{2}d(h_1 + h_2)$

Ex.1 A rectangle and a parallelogram have the same area of 72 cm². The breadth of the rectangle is 8 cm. The height of the parallelogram is 9 cm. Find the base of the parallelogram and the length of the rectangle.

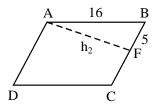
Sol. Area of rectangle =
$$\lambda \times b = \lambda \times 8 = 72$$

 \therefore $\lambda = 9 \text{ cm}$

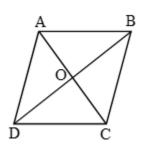

Area of parallelogram = base \times height

= base \times 9 = 72

 \therefore Base = 8 cm


- **Ex.2** The area of a parallelogram is 64 cm². Its sides are 16 cm and 5 cm. Find the two heights of the parallelogram.
- **Sol.** (i) Area = base × height = $16 \times h_1 = 64$

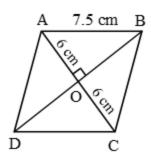
$$\therefore$$
 h₁ = 4cm


(ii) Area = base × height = $5 \times h_2 = 64$

:.
$$h_2 = 12.8 \text{ cm}$$

- **Ex.3** The diagonals of a rhombus measure 10 cm and 24 cm. Find its area. Also find the measure of its side.
- **Sol.** AC = 10 cm, BD = 24 cm

Area = $\frac{1}{2} (d_1 \times d_2) = \frac{1}{2} \times 10 \times 24 \text{ cm}^2 = 120 \text{ cm}^2$ In $\triangle ABO$, $\angle AOB = 90^\circ$, $AO = \frac{1}{2} AC = 5 \text{ cm}$, $BO = \frac{1}{2} BD = 12 \text{ cm}$. $\therefore AB^2 = AO^2 + OB^2 = 25 + 144 = 169 = 13 \times 13$

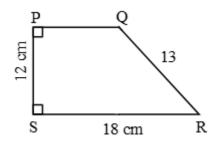


 \therefore AB = 13 cm

- \therefore Measure of λ side = 13 cm
- **Ex.4** In rhombus ABCD, AB = 7.5 cm, and AC = 12 cm. Find the area of the rhombus.
- **Sol.** In $\triangle ABO$, $\angle AOB = 90^{\circ}$, $AO = \frac{1}{2} AC = 6 \text{ cm}$, AB = 7.5 cm
 - $\therefore \quad OB^2 = AB^2 OA^2$
 - $= (7.5)^2 6^2 = 56.25 36 = 20.25$
 - :. $OB = \sqrt{2025} = 4.5 \text{ cm}$
 - \therefore BD = 2 × OB = 9 cm

Area of rhombus = $\frac{1}{2} d_1 \times d_2$

 $= \frac{1}{2} \times 9 \times 12 \text{ cm}^2 = 54 \text{ cm}^2$


- **Ex.5** In the trapezium PQRS, $\angle P = \angle S = 90^{\circ}$, PQ = QR = 13 cm, PS = 12 cm and SR = 18 cm. Find the area of the trapezium.
- Sol. The parallel sides are PQ and SR, and the distance between them is PS,

since $\angle P = \angle S = 90^{\circ}$

 \therefore Area = $\frac{1}{2}$ × sum of parallel sides × heights

 $= \frac{1}{2} \times (13 + 18) \times 12 \text{ cm}^2$

 $= 186 \text{ cm}^2$

