RATIONAL NUMBER

POWERS

POWERS

Exponential Notation and Rational Numbers :

Exponential notation can be extended to rational numbers. For example: $\left(\frac{4}{5}\right) \times \left(\frac{4}{5}\right) \times \left(\frac{4}{5}\right)$

can be written as $\left(\frac{4}{5}\right)^3$ which is read as $\frac{4}{5}$ raised to the power 3.

(i)
$$\left(\frac{3}{4}\right)^3 = \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) = \frac{3^3}{4^3} = \frac{27}{64}$$

(ii)
$$\left(\frac{-5}{6}\right)^2 = \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) = \frac{(-5)^2}{6^2} = \frac{25}{36}$$

(ii)
$$\left(\frac{-2}{3}\right)^3 = \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) = \frac{(-2)^3}{3^3} = \frac{-8}{27}$$

In general, if $\frac{x}{y}$ is a rational number and a is a positive integer, then

$$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$$

Ex.1 Evaluate $\left(-\frac{4}{5}\right)^3$. Sol. $\left(-\frac{4}{5}\right)^3 = \left(-\frac{4}{5}\right) \times \left(-\frac{4}{5}\right) \times \left(-\frac{4}{5}\right) = \frac{(-4)^3}{5^3}$ $= \frac{-64}{125}$ **Ex.2** Express $\frac{27}{64}$ and $\frac{-8}{27}$ as the powers of rational numbers.

Sol.
$$\frac{27}{64} = \frac{3 \times 3 \times 3}{4 \times 4 \times 4} = \frac{3^3}{4^3} = \left(\frac{3}{4}\right)^3$$

and $\frac{-8}{27} = \frac{(-2) \times (-2) \times (-2)}{3 \times 3 \times 3} = \frac{(-2)^3}{3^3} = \left(\frac{-2}{3}\right)^3$

Reciprocals with Positive Integral Exponents:

The reciprocal of 2 is $\frac{1}{2}$, reciprocal of 2^3 is $\frac{1}{2^3}$.

Reciprocal of
$$\left(\frac{2}{3}\right)^4 = \frac{1}{\left(\frac{2}{3}\right)^4} = \frac{1}{\frac{2^4}{3^4}} = \frac{3^4}{2^4} = \left(\frac{3}{2}\right)^4$$

Reciprocal of
$$\left(\frac{-4}{5}\right)^4 = \left(\frac{-5}{4}\right)^4$$
 and

Reciprocal of $\left(\frac{1}{3}\right)^5 = \left(\frac{3}{1}\right)^5 = 3^5$

Reciprocals with Negative Integral Exponents

Reciprocal of $2 = \frac{1}{2} = \frac{1}{2^1}$.

Therefore, the reciprocal of 2 is 2^{-1} . The reciprocal of $3^2 = \frac{1}{3^2} = 3^{-2}$.

Reciprocal of $\left(\frac{4}{5}\right)^2 = \left(\frac{4}{5}\right)^{-2}$

CLASS 8

MATHS

Reciprocal of
$$\left(\frac{-2}{3}\right)^3 = \left(\frac{-2}{3}\right)^{-3}$$
, etc.

In general, if x is any rational number other than zero and a is any positive integer, then:

$$x^{-a} = \frac{1}{x^{a}}$$

Ex.3 Simplify $\left(\frac{2}{3}\right)^{-3} \div \left(\frac{4}{3}\right)^{-2}$.
Sol. $\left(\frac{2}{3}\right)^{-3} \div \left(\frac{4}{3}\right)^{-2} = \left(\frac{3}{2}\right)^{3} \div \left(\frac{3}{4}\right)^{2}$
$$= \frac{3 \times 3 \times 3}{2 \times 2 \times 2} \div \frac{3 \times 3}{4 \times 4}$$
$$= \frac{27}{8} \div \frac{9}{16} = \frac{27}{8} \times \frac{16}{9} = 6$$

Laws of Exponents :

- 1

1. Consider the following.

(i)
$$3^3 \times 3^4 = 3 \times 3$$

 $= 3^7 = 3^{3+4}$
(ii) $\left(\frac{5}{2}\right)^2 \times \left(\frac{5}{2}\right)^3 = \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2}$
 $= \left(\frac{5}{2}\right)^5 = \left(\frac{5}{2}\right)^{2+3}$
 $x^a \times x^b = x^{a+b}$
2. (i) $2^5 \div 2^2 = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2} = 2 \times 2 \times 2$
 $= 2^3 = 2^{5-2}$

CLASS 8

(ii) $\left(\frac{2}{3}\right)^6 \div \left(\frac{2}{3}\right)^2 = \frac{\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}}{\frac{2}{3} \times \frac{2}{3}}$ $= \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right)^{6-2}$ $x^a \div x^b = x^{a-b}$

3. (i)
$$(2^3)^2 = (2 \times 2 \times 2)^2$$

 $= (2 \times 2 \times 2) \times (2 \times 2 \times 2)$
 $= 2^6 = 2^3 \times 2^3$
(ii) $\left\{ \left(\frac{2}{3}\right)^3 \right\}^2 = \left(\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}\right)^2$
 $= \left(\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}\right) \times \left(\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}\right) = \left(\frac{2}{3}\right)^6 = \left(\frac{2}{3}\right)^{3 \times 2}$
 $(x^a)^b = x^{ab}$

4. (i) $2^4 \times 3^4 = (2 \times 2 \times 2 \times 2) \times (3 \times 3 \times 3 \times 3)$

$$= (2 \times 3) \times (2 \times 3) \times (2 \times 3) \times (2 \times 3) = (2 \times 3)^4$$

(ii) $\left(\frac{3}{5}\right)^4 \times \left(\frac{1}{2}\right)^4$
$$= \left(\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}\right) \times \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)$$

$$= \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3}{5} \times \frac{1}{2}\right)$$

$$= \left(\frac{3}{5} \times \frac{1}{2}\right)^4$$

4

MATHS

$$x^{a} \times y^{a} = (x \times y)^{a}$$
5. (i) $2^{4} \div 3^{4} = \frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3} = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^{4}$
(ii) $\left(\frac{3}{5}\right)^{4} \div \left(\frac{1}{2}\right)^{4} = \frac{\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}}{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}}$

$$= \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{3}{\frac{5}{1}}\right) = \left(\frac{3}{\frac{5}{1}}\right)^{4}$$

$$x^{a} \div y^{a} = \left(\frac{x}{y}\right)^{a}$$
Ex.4 Simplify $\left[\left(\frac{2}{3}\right)^{2}\right]^{3} \times \left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$
Sol. $\left[\left(\frac{2}{3}\right)^{2}\right]^{3} \times \left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times \frac{1}{6}$

$$= \left(\frac{2}{3}\right)^{6} \times 3^{4} \times \frac{1}{3} \times \frac{1}{6}$$

$$= 2^{6} \times 3^{-6} \times 3^{4} \times 3^{-1} \times 6^{-1}$$

$$= 2^{6} \times 3^{-6} \times 3^{4} \times 3^{-1} \times 2^{-1} \times 3^{-1}$$

$$= 2^{6} \times (-1) \times 3^{-1} \times 4 + (-1) + (-6)$$

$$= 2^{6-1} \times 3^{-1} \times 4^{-1} - 6$$

5

MATHS

$$= 2^{5} \times 3^{-4} = \frac{2^{3}}{3^{4}} = \frac{32}{81}$$

Ex.5 Find x so that $\left(\frac{2}{3}\right)^{-5} \times \left(\frac{2}{3}\right)^{-11} \times \left(\frac{2}{3}\right)^{8x}$
Sol. $\left(\frac{2}{3}\right)^{-5} \times \left(\frac{2}{3}\right)^{-11} \times \left(\frac{2}{3}\right)^{8x}$
 $\left(\frac{2}{3}\right)^{(-5)+(-11)} = \left(\frac{2}{3}\right)^{8x}$
 $\left(\frac{2}{3}\right)^{-5-11} = \left(\frac{2}{3}\right)^{8x}$
 $\Rightarrow \left(\frac{2}{3}\right)^{-16} = \left(\frac{2}{3}\right)^{8x}$
 $8x = -16 \qquad \therefore x = -2$

5

So, If x is any rational number different from zero and a, b are any integers, then,

Law I:	$x^a \times x^b = x^{a+b}$
Law II:	$x^a \div x^b = x^{a-b}$
Law III:	$(x^a)^b = x^{ab}$
Law IV:	$x^a \times y^a = (x \times y)^a$

(where y is also a non-zero rational number)

V: $x^a \div y^a = \left(\frac{x}{y}\right)^a$

(where y is also a non-zero rational number)

Ex.6 Evaluate
$$\left(\frac{2}{3}\right)^4 \div \left(\frac{2}{3}\right)^4$$

Sol. $\left(\frac{2}{3}\right)^4 \div \left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right)^{4-4} \times \left(\frac{2}{3}\right)^0$
but $\left(\frac{2}{3}\right)^4 \div \left(\frac{2}{3}\right)^4 = \frac{\left(\frac{2}{3}\right)^4}{\left(\frac{2}{3}\right)^4} = 1$

the expression $=\left(\frac{2}{3}\right)^0 = 1$