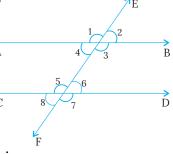
Intersecting and Parallel Lines

i. Definition and Explanation

What is a Line? A line is a straight path of points that extends infinitely in both directions. It has no thickness and no endpoints. We represent it with arrows at both ends.

Intersecting Lines: - When two or more lines cross each other at a single, common point, they are called intersecting lines.

- **Explanation:** Imagine two straight roads crossing each other at an intersection. That crossing point is the point of intersection. At this point, four angles are formed.
- **Special Case:** When two lines intersect and form a right angle (90°), they are called perpendicular lines.

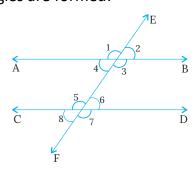

Parallel Lines: - Two lines in the same plane that never intersect, no matter how far they are extended, are called parallel lines.

- **Explanation:** Think of the two rails of a straight train track. They are always the same distance apart and will never meet. The distance between them is constant.
- Notation: We use the symbol || to show that lines are parallel. For example, line | || line m.

Transversal Line: - A transversal is a line that intersects two or more other lines at distinct (different) points.

• **Explanation:** When a transversal cuts across two lines, it creates eight angles. Understanding the relationships between these angles is the key to this topic.

ii. Key Points and Important Terms


When a transversal intersects two lines, the following angles are formed:

Interior Angles: Angles that lie between the two lines.

• **Example:** Angles 3, 4, 5, 6.

Exterior Angles: Angles that lie outside the two lines.

• **Example:** Angles 1, 2, 7, 8.

Angle Pairs Formed by a Transversal

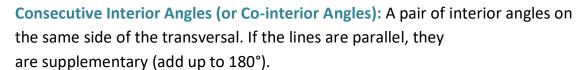
Vertically Opposite Angles: Angles that are opposite each other when two lines intersect. They are always equal.

• Pairs: (∠1 & ∠4), (∠2 & ∠3), (∠5 & ∠8), (∠6 & ∠7).

Linear Pair of Angles: Two adjacent angles that form a straight line. They are supplementary (add up to 180°).

• **Pairs:** (∠1 & ∠2), (∠3 & ∠4), (∠5 & ∠6), (∠7 & ∠8), etc.

Corresponding Angles: Angles that are in the same relative position at each intersection. If the lines are parallel, they are equal.


• Pairs: $(\angle 1 \& \angle 5)$, $(\angle 2 \& \angle 6)$, $(\angle 3 \& \angle 7)$, $(\angle 4 \& \angle 8)$.

Alternate Interior Angles: A pair of interior angles on opposite sides of the transversal. If the lines are parallel, they are equal.

• **Pairs:** (∠3 & ∠6), (∠4 & ∠5).

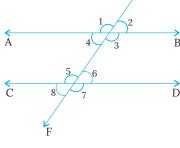
Alternate Exterior Angles: A pair of exterior angles on opposite sides of the transversal. If the lines are parallel, they are equal.

• Pairs: (∠1 & ∠8), (∠2 & ∠7).

• Pairs: (∠3 & ∠5), (∠4 & ∠6).

iii. Detailed Examples with Solutions

Example 1: Basic Intersecting Lines Two lines, AB and CD, intersect at point O. If $\angle AOC = 45^{\circ}$, find the measure of all other angles.


Solution:

Given: $\angle AOC = 45^{\circ}$.

Vertically Opposite Angle: $\angle BOD$ is vertically opposite to $\angle AOC$. Therefore.

$$\angle BOD = \angle AOC = 45^{\circ}$$
.

Linear Pair: \angle AOC and \angle AOD form a linear pair. So, \angle AOC + \angle AOD = 180°. 45° + \angle AOD = 180° \angle AOD = 180° - 45° = 135°.

∠D

Vertically Opposite Angle: \angle BOC is vertically opposite to \angle AOD. Therefore, \angle BOC = \angle AOD = 135°.

Answer: $\angle BOD = 45^{\circ}$, $\angle AOD = 135^{\circ}$, $\angle BOC = 135^{\circ}$.

iv. Summary of Main Concepts

- Intersecting Lines: Two lines that cross at one point.
- **Parallel Lines:** Two lines that are in the same plane and never cross. The distance between them is constant.
- Transversal: A line that intersects two or more other lines.
- The Golden Rule: The special angle relationships only apply when the lines are parallel.
- EQUAL Angles:
 - Corresponding Angles
 - Alternate Interior Angles
 - Alternate Exterior Angles
 - Vertically Opposite Angles (always equal)
- SUPPLEMENTARY Angles (add to 180°):
 - Consecutive Interior Angles
 - Linear Pair (always supplementary)
- Converse Rule: If any of the parallel line angle relationships (e.g., corresponding angles are equal) are true, then you can conclude that the lines must be parallel.