Highest Common Factor

Highest Common Factor (HCF)

The Highest Common Factor (HCF) of two or more numbers is the largest number that divides each of them exactly.

HCF is also called Greatest Common Divisor (GCD).

1. Methods to Find HCF

A. Prime Factorization Method

- Find the prime factors of each number.
- Identify the common factors and multiply them.

Example: Find HCF of 36 and 48

- Prime factors of 36: $2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$
- Prime factors of 48: $2 \times 2 \times 2 \times 2 \times 3 = 2^4 \times 3$
- Common factors: $2^2 \times 3 = 12$

HCF of 36 and 48 = 12

B. Division Method

- i. Divide the larger number by the smaller number.
- ii. Use the remainder as the new divisor and divide again.
- iii. Repeat until the remainder is 0.
- iv. The last divisor is the HCF.

Example: Find HCF of 48 and 60

- 60 ÷ 48 = 1 remainder 12
- 48 ÷ 12 = 4 remainder 0

HCF of 48 and 60 = 12

C. Listing Common Factors Method

List the factors of each number and find the largest common factor.

Example: Find HCF of 24 and 36

- Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
- Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36

HCF of 24 and 36 = 12

2. Properties of HCF

- i. HCF is always a factor of the given numbers.
- ii. HCF of two prime numbers is always 1 (e.g., HCF of 7 and 13 is 1).
- iii. HCF of a number with itself is the number itself (e.g., HCF of 15 and 15 is 15).
- iv. HCF of co-prime numbers is always 1 (e.g., HCF of 9 and 16 is 1).
- v. HCF helps in simplifying fractions (e.g., 12/18 simplifies to 2/3 using HCF).

LCM (Least or lowest Common Multiple)

LCM stands for Least Common Multiple.

It is the smallest number that is a multiple of two or more numbers.

Example:

Find the LCM of 4 and 6:

- Multiples of 4 = 4, 8, 12, 16, 20, ...
- Multiples of 6 = 6, 12, 18, 24, ...
- Common multiples = 12, 24, ...
- Least Common Multiple = 12

So, LCM (4, 6) = 12

Methods to Find LCM:

1. Common Division Method?

In this method, we divide the given numbers together by a common prime number step by step until all the remaining numbers become 1.

We multiply all the divisors to get the LCM.

Example: Find LCM of 12 and 18 using Common Division Method

Step	12	18
2	6	9
3	2	3
2	1	3
3	1	1

Now multiply all the divisors used:

 $2 \times 3 \times 2 \times 3 = 36$

So, LCM (12, 18) = 36

Steps:

- i. Write the numbers in a row.
- ii. Divide all by a common prime number (if possible).
- iii. If any number is not divisible, write it as it is.
- iv. Repeat until all numbers become 1.
- v. Multiply all the prime divisors used to get the LCM.

2. Prime Factorization Method

Find prime factors of each number and take the highest powers of all primes.

Example:

LCM of 12 and 18 $12 = 2^2 \times 3$ $18 = 2 \times 3^2$ LCM = $2^2 \times 3^2 = 4 \times 9 = 36$

Properties of LCM:

- i. LCM of any two numbers is always a multiple of both
- ii. LCM of two prime numbers is their product

Example: LCM (2, 5) = 2 × 5 = 10

iii. LCM of a number with itself is the number

Example: LCM (7, 7) = 7

iv. LCM is used to add or subtract fractions with different denominators

Use of LCM in Real Life:

To find common time for repeating events

To solve word problems on smallest quantity

To calculate next common meeting point (like bells ringing together)

Summary:

LCM = Smallest common multiple

Methods: Listing, Prime Factorization

Used in real-life problems and fractions

Example: LCM (4, 6) = 12